The antimicrobial resistance crisis: management through gene monitoring.

Carolyn A Michael, Ashley E Franks, Maurizio Labbate
Author Information
  1. Carolyn A Michael: School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia carolyn.michael@uts.edu.au camcon@ozemail.com.au. ORCID
  2. Ashley E Franks: Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia. ORCID
  3. Maurizio Labbate: School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia. ORCID

Abstract

Antimicrobial resistance (AMR) is an acknowledged crisis for humanity. Its genetic origins and dire potential outcomes are increasingly well understood. However, diagnostic techniques for monitoring the crisis are currently largely limited to enumerating the increasing incidence of resistant pathogens. Being the end-stage of the evolutionary process that produces antimicrobial resistant pathogens, these measurements, while diagnostic, are not prognostic, and so are not optimal in managing this crisis. A better test is required. Here, using insights from an understanding of evolutionary processes ruling the changing abundance of genes under selective pressure, we suggest a predictive framework for the AMR crisis. We then discuss the likely progression of resistance for both existing and prospective antimicrobial therapies. Finally, we suggest that by the environmental monitoring of resistance gene frequency, resistance may be detected and tracked presumptively, and how this tool may be used to guide decision-making in the local and global use of antimicrobials.

Keywords

References

  1. Clin Infect Dis. 1997 Jan;24 Suppl 1:S9-16 [PMID: 8994776]
  2. J Infect Dis. 2012 Feb 1;205(3):401-11 [PMID: 22158567]
  3. PLoS Genet. 2012 Jun;8(6):e1002787 [PMID: 22761588]
  4. PLoS Pathog. 2012;8(8):e1002837 [PMID: 22876180]
  5. ISME J. 2011 Jul;5(7):1162-77 [PMID: 21248857]
  6. Trends Biotechnol. 1999 Oct;17(10):403-9 [PMID: 10481172]
  7. Nature. 2014 Aug 7;512(7512):14-5 [PMID: 25100462]
  8. Lancet Infect Dis. 2013 Dec;13(12):1057-98 [PMID: 24252483]
  9. Int J Evol Biol. 2012;2012:394026 [PMID: 22900231]
  10. J Ind Microbiol Biotechnol. 2006 Jan;33(1):29-36 [PMID: 16328508]
  11. PLoS Comput Biol. 2012;8(10):e1002743 [PMID: 23133348]
  12. Nat Rev Microbiol. 2011 Nov 08;10(1):13-26 [PMID: 22064560]
  13. Antimicrob Agents Chemother. 2007 Feb;51(2):412-6 [PMID: 17116668]
  14. ISME J. 2008 Apr;2(4):417-28 [PMID: 18273063]
  15. ISME J. 2015 Jun;9(6):1269-79 [PMID: 25500508]
  16. Front Microbiol. 2015 Aug 05;6:803 [PMID: 26300869]
  17. Sci Rep. 2016 Feb 16;6:21550 [PMID: 26878889]
  18. Nat Commun. 2015 Nov 23;6:8924 [PMID: 26592443]
  19. Front Genet. 2015 Mar 11;6:99 [PMID: 25815007]
  20. BMC Genet. 2010 Sep 15;11:82 [PMID: 20843359]
  21. Mob DNA. 2011 Apr 30;2(1):6 [PMID: 21529368]
  22. Trends Ecol Evol. 2013 Aug;28(8):489-95 [PMID: 23706556]
  23. Microbiol Mol Biol Rev. 2014 Jun;78(2):257-77 [PMID: 24847022]
  24. Nat Rev Drug Discov. 2013 May;12(5):371-87 [PMID: 23629505]
  25. Front Public Health. 2014 Sep 16;2:145 [PMID: 25279369]
  26. PLoS One. 2009;4(4):e5276 [PMID: 19390587]
  27. ISME J. 2015 Jan;9(1):207-16 [PMID: 25003965]
  28. Front Microbiol. 2013 Jan 22;4:4 [PMID: 23386843]
  29. FEMS Microbiol Lett. 2008 Jan;278(2):207-12 [PMID: 18042230]
  30. Science. 2009 May 22;324(5930):1034 [PMID: 19460999]
  31. PLoS Biol. 2016 Mar 02;14(3):e1002394 [PMID: 26934590]
  32. Front Microbiol. 2015 Jan 06;5:742 [PMID: 25610432]
  33. Trends Genet. 2015 Apr;31(4):215-9 [PMID: 25773713]
  34. Science. 2009 Jan 16;323(5912):379-82 [PMID: 19150844]
  35. Front Microbiol. 2016 Feb 19;7:173 [PMID: 26925045]
  36. Mol Biol Evol. 2002 Dec;19(12):2226-38 [PMID: 12446813]
  37. J Biotechnol. 2013 Sep 20;167(4):441-7 [PMID: 23942379]
  38. J Mark Access Health Policy. 2015 Aug 12;3:null [PMID: 27123182]
  39. Am Nat. 2004 Jul;164(1):1-12 [PMID: 15266366]
  40. J Microbiol Methods. 2001 Apr;44(3):253-62 [PMID: 11240048]
  41. PLoS Biol. 2016 Mar 17;14(3):e1002417 [PMID: 26987049]
  42. MLO Med Lab Obs. 2015 Jan;47(1):22-3 [PMID: 26281115]
  43. Proc Biol Sci. 2007 Sep 22;274(1623):2351-6 [PMID: 17650474]
  44. PLoS One. 2014 Sep 23;9(9):e108151 [PMID: 25247418]
  45. Front Microbiol. 2014 Sep 18;5:489 [PMID: 25278933]
  46. FEMS Microbiol Ecol. 2016 Mar;92 (3):null [PMID: 26832203]
  47. Int J Infect Dis. 2015 Mar;32:94-100 [PMID: 25809763]

MeSH Term

Anti-Bacterial Agents
Bacteria
Bacterial Proteins
Drug Resistance, Bacterial
Evolution, Molecular
Gene Frequency
Genome, Bacterial
Humans
Prospective Studies
Selection, Genetic

Chemicals

Anti-Bacterial Agents
Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0resistancecrisisantimicrobialmonitoringgeneAMRdiagnosticresistantpathogensevolutionarysuggestmaymanagementAntimicrobialacknowledgedhumanitygeneticoriginsdirepotentialoutcomesincreasinglywellunderstoodHowevertechniquescurrentlylargelylimitedenumeratingincreasingincidenceend-stageprocessproducesmeasurementsprognosticoptimalmanagingbettertestrequiredusinginsightsunderstandingprocessesrulingchangingabundancegenesselectivepressurepredictiveframeworkdiscusslikelyprogressionexistingprospectivetherapiesFinallyenvironmentalfrequencydetectedtrackedpresumptivelytoolusedguidedecision-makinglocalglobaluseantimicrobialscrisis:evolutionhorizontaltransfer

Similar Articles

Cited By