In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry.

Maria Cristina Lo Giudice, Luciana M Herda, Ester Polo, Kenneth A Dawson
Author Information
  1. Maria Cristina Lo Giudice: Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
  2. Luciana M Herda: Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
  3. Ester Polo: Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
  4. Kenneth A Dawson: Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.

Abstract

Nanoparticles interacting with, or derived from, living organisms are almost invariably coated in a variety of biomolecules presented in complex biological milieu, which produce a bio-interface or 'biomolecular corona' conferring a biological identity to the particle. Biomolecules at the surface of the nanoparticle-biomolecule complex present molecular fragments that may be recognized by receptors of cells or biological barriers, potentially engaging with different biological pathways. Here we demonstrate that using intense fluorescent reporter binders, in this case antibodies bound to quantum dots, we can map out the availability of such recognition fragments, allowing for a rapid and meaningful biological characterization. The application in microfluidic flow, in small detection volumes, with appropriate thresholding of the detection allows the study of even complex nanoparticles in realistic biological milieu, with the emerging prospect of making direct connection to conditions of cell level and in vivo experiments.

References

  1. J Thromb Haemost. 2010 Feb;8(2):311-4 [PMID: 19878531]
  2. Nat Nanotechnol. 2007 Aug;2(8):469-78 [PMID: 18654343]
  3. Nat Nanotechnol. 2008 Mar;3(3):131-2 [PMID: 18654480]
  4. Curr Opin Biotechnol. 1996 Feb 1;7(1):72-7 [PMID: 8791316]
  5. J Immunol. 2012 May 15;188(10):4715-9 [PMID: 22556132]
  6. Nat Nanotechnol. 2009 Sep;4(9):577-80 [PMID: 19734930]
  7. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2029-30 [PMID: 17284585]
  8. Nat Commun. 2016 Jan 08;7:10241 [PMID: 26742890]
  9. Nat Methods. 2008 Sep;5(9):763-75 [PMID: 18756197]
  10. Angew Chem Int Ed Engl. 2014 Jul 28;53(31):8004-31 [PMID: 25045074]
  11. Nat Nanotechnol. 2013 Feb;8(2):137-43 [PMID: 23334168]
  12. Nat Nanotechnol. 2013 Oct;8(10):772-81 [PMID: 24056901]
  13. ACS Nano. 2014 Jun 24;8(6):5402-12 [PMID: 24882660]
  14. ACS Nano. 2015 Dec 22;9(12):11872-85 [PMID: 26575243]
  15. J Thromb Haemost. 2012 May;10(5):919-30 [PMID: 22394434]
  16. ACS Nano. 2012 Mar 27;6(3):2532-41 [PMID: 22356488]
  17. Nat Nanotechnol. 2016 Apr;11(4):372-7 [PMID: 26878141]
  18. Nanoscale. 2014 Oct 7;6(19):11439-50 [PMID: 25154771]
  19. ACS Nano. 2015 Aug 25;9(8):8142-56 [PMID: 26135229]
  20. Nanoscale. 2015 Jul 28;7(28):11980-90 [PMID: 26108682]
  21. Nat Commun. 2013;4:2093 [PMID: 23803641]
  22. Nat Nanotechnol. 2011 Jan;6(1):39-44 [PMID: 21170037]
  23. ACS Nano. 2011 May 24;5(5):3693-700 [PMID: 21500856]
  24. Small. 2016 Jan 6;12(1):76-82 [PMID: 26618755]
  25. ACS Nano. 2014 Jun 24;8(6):5515-26 [PMID: 24797313]
  26. Nat Nanotechnol. 2016 Jul;11(7):613-20 [PMID: 26974957]
  27. Nat Nanotechnol. 2012 Dec;7(12):779-86 [PMID: 23212421]
  28. ACS Nano. 2014 Mar 25;8(3):2439-55 [PMID: 24517450]
  29. Nat Methods. 2004 Oct;1(1):73-8 [PMID: 16138413]
  30. Beilstein J Nanotechnol. 2014 Oct 02;5:1699-711 [PMID: 25383281]
  31. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 Jul-Aug;2(4):334-48 [PMID: 20101649]
  32. ACS Nano. 2013 Nov 26;7(11):10066-74 [PMID: 24128271]
  33. Proteomics. 2005 Aug;5(13):3262-77 [PMID: 16052621]
  34. Sci Rep. 2015 Dec 01;5:17040 [PMID: 26621190]
  35. ACS Nano. 2010 Jul 27;4(7):3623-32 [PMID: 20553005]
  36. Nanotoxicology. 2016 Sep;10(7):981-91 [PMID: 27027807]
  37. Biomater Sci. 2014 Sep 29;2(9):1210-1221 [PMID: 32481892]
  38. Biomacromolecules. 2015 Apr 13;16(4):1311-21 [PMID: 25794196]
  39. Nat Nanotechnol. 2015 May;10(5):472-9 [PMID: 25822932]
  40. Nat Nanotechnol. 2011 Dec 06;6(12):755 [PMID: 22146539]
  41. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9612-7 [PMID: 15210939]
  42. Nat Rev Immunol. 2004 Aug;4(8):648-55 [PMID: 15286731]
  43. Nat Protoc. 2012 Jun 14;7(7):1311-26 [PMID: 22722367]
  44. Nanomedicine. 2009 Jun;5(2):106-17 [PMID: 19071065]
  45. Langmuir. 2013 May 28;29(21):6485-94 [PMID: 23631648]
  46. ACS Nano. 2014 Jan 28;8(1):503-13 [PMID: 24377255]
  47. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2050-5 [PMID: 17267609]
  48. Nat Mater. 2005 Jun;4(6):435-46 [PMID: 15928695]

MeSH Term

Algorithms
Antibodies
Flow Cytometry
Humans
Nanoparticles
Protein Binding
Proteins
Quantum Dots
Serum Albumin
Spectrometry, Fluorescence
Transferrin

Chemicals

Antibodies
Proteins
Serum Albumin
Transferrin

Word Cloud

Created with Highcharts 10.0.0biologicalcomplexmilieufragmentscharacterizationflowdetectionNanoparticlesinteractingderivedlivingorganismsalmostinvariablycoatedvarietybiomoleculespresentedproducebio-interface'biomolecularcorona'conferringidentityparticleBiomoleculessurfacenanoparticle-biomoleculepresentmolecularmayrecognizedreceptorscellsbarrierspotentiallyengagingdifferentpathwaysdemonstrateusingintensefluorescentreporterbinderscaseantibodiesboundquantumdotscanmapavailabilityrecognitionallowingrapidmeaningfulapplicationmicrofluidicsmallvolumesappropriatethresholdingallowsstudyevennanoparticlesrealisticemergingprospectmakingdirectconnectionconditionscelllevelvivoexperimentssitunanoparticlebiomolecularinteractionsmediacytometry

Similar Articles

Cited By (36)