Regulation of Ebola virus VP40 matrix protein by SUMO.

Maite Baz-Martínez, Ahmed El Motiam, Paula Ruibal, Gabriela N Condezo, Carlos F de la Cruz-Herrera, Valerie Lang, Manuel Collado, Carmen San Martín, Manuel S Rodríguez, Cesar Muñoz-Fontela, Carmen Rivas
Author Information
  1. Maite Baz-Martínez: Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, E15706, Spain.
  2. Ahmed El Motiam: Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, E15706, Spain.
  3. Paula Ruibal: Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraβe 52, D20251, Hamburg, Germany.
  4. Gabriela N Condezo: Department of Macromolecular Structures and NanoBioMedicine Initiative, Centro Nacional de Biotecnología-CSIC, Darwin 3, Madrid 28049, Spain.
  5. Carlos F de la Cruz-Herrera: Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Darwin 3, Madrid 28049, Spain.
  6. Valerie Lang: Ubiquitylation and Cancer Molecular Biology laboratory, Inbiomed, San Sebastian-Donostia, 20009 Gipuzkoa, Spain.
  7. Manuel Collado: Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, E15706, Spain.
  8. Carmen San Martín: Department of Macromolecular Structures and NanoBioMedicine Initiative, Centro Nacional de Biotecnología-CSIC, Darwin 3, Madrid 28049, Spain.
  9. Manuel S Rodríguez: Advanced Technology Institute in Life Sciences (ITAV) CNRS-USR3505, 31106 Toulouse, France.
  10. Cesar Muñoz-Fontela: Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraβe 52, D20251, Hamburg, Germany.
  11. Carmen Rivas: Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, E15706, Spain.

Abstract

The matrix protein of Ebola virus (EBOV) VP40 regulates viral budding, nucleocapsid recruitment, virus structure and stability, viral genome replication and transcription, and has an intrinsic ability to form virus-like particles. The elucidation of the regulation of VP40 functions is essential to identify mechanisms to inhibit viral replication and spread. Post-translational modifications of proteins with ubiquitin-like family members are common mechanisms for the regulation of host and virus multifunctional proteins. Thus far, no SUMOylation of VP40 has been described. Here we demonstrate that VP40 is modified by SUMO and that SUMO is included into the viral like particles (VLPs). We demonstrate that lysine residue 326 in VP40 is involved in SUMOylation, and by analyzing a mutant in this residue we show that SUMO conjugation regulates the stability of VP40 and the incorporation of SUMO into the VLPs. Our study indicates for the first time, to the best of our knowledge, that EBOV hijacks the cellular SUMOylation system in order to modify its own proteins. Modulation of the VP40-SUMO interaction may represent a novel target for the therapy of Ebola virus infection.

References

  1. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15936-41 [PMID: 14673115]
  2. Mol Cell. 2008 Nov 7;32(3):301-5 [PMID: 18995828]
  3. Nat Rev Mol Cell Biol. 2001 Mar;2(3):202-10 [PMID: 11265250]
  4. Trends Cell Biol. 2000 Aug;10(8):335-42 [PMID: 10884686]
  5. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13871-6 [PMID: 11095724]
  6. PLoS Pathog. 2009 Jun;5(6):e1000493 [PMID: 19557165]
  7. J Biol Chem. 2001 Apr 20;276(16):12654-9 [PMID: 11124955]
  8. Oncogene. 2015 Mar 12;34(11):1442-50 [PMID: 24704831]
  9. Structure. 2003 Apr;11(4):423-33 [PMID: 12679020]
  10. Proc Natl Acad Sci U S A. 2008 Mar 11;105(10 ):3974-9 [PMID: 18305167]
  11. J Virol. 2016 Sep 29;90(20):9163-71 [PMID: 27489272]
  12. N Engl J Med. 2014 Nov 27;371(22):2092-100 [PMID: 25353969]
  13. Curr Opin Microbiol. 2006 Aug;9(4):430-6 [PMID: 16815735]
  14. Mol Cell. 1998 Aug;2(2):233-9 [PMID: 9734360]
  15. Oncogene. 2016 Jun 2;35(22):2873-80 [PMID: 26411363]
  16. J Virol. 2001 Jun;75(11):5205-14 [PMID: 11333902]
  17. Mol Cell Proteomics. 2006 Dec;5(12):2298-310 [PMID: 17000644]
  18. J Virol. 2013 Jan;87(2):807-17 [PMID: 23115286]
  19. N Engl J Med. 2014 Oct 9;371(15):1418-25 [PMID: 24738640]
  20. Nature. 2009 Mar 26;458(7237):422-9 [PMID: 19325621]
  21. Virology. 2001 Apr 25;283(1):1-6 [PMID: 11312656]
  22. Virology. 2010 Jul 20;403(1):56-66 [PMID: 20444481]
  23. EMBO J. 2000 Aug 15;19(16):4228-36 [PMID: 10944105]
  24. J Biol Chem. 2001 Jun 15;276(24):21664-9 [PMID: 11259410]
  25. J Virol. 2010 Jul;84(14):7053-63 [PMID: 20463076]
  26. Cell Death Dis. 2012 Sep 27;3:e393 [PMID: 23013792]
  27. J Mol Biol. 2000 Jun 30;300(1):103-12 [PMID: 10864502]
  28. J Virol. 2012 Jan;86(2):642-54 [PMID: 22072786]
  29. Cell. 2002 Feb 8;108(3):345-56 [PMID: 11853669]

MeSH Term

Animals
Chlorocebus aethiops
Ebolavirus
HEK293 Cells
Hemorrhagic Fever, Ebola
Host-Pathogen Interactions
Humans
Lysine
Microscopy, Electron
Mutation
Nucleoproteins
Sumoylation
Vero Cells
Viral Core Proteins
Virion

Chemicals

Nucleoproteins
Viral Core Proteins
nucleoprotein VP40, Ebola virus
Lysine

Word Cloud

Created with Highcharts 10.0.0VP40virusSUMOviralEbolaproteinsSUMOylationmatrixproteinEBOVregulatesstabilityreplicationparticlesregulationmechanismsdemonstrateVLPsresiduebuddingnucleocapsidrecruitmentstructuregenometranscriptionintrinsicabilityformvirus-likeelucidationfunctionsessentialidentifyinhibitspreadPost-translationalmodificationsubiquitin-likefamilymemberscommonhostmultifunctionalThusfardescribedmodifiedincludedlikelysine326involvedanalyzingmutantshowconjugationincorporationstudyindicatesfirsttimebestknowledgehijackscellularsystemordermodifyModulationVP40-SUMOinteractionmayrepresentnoveltargettherapyinfectionRegulation

Similar Articles

Cited By