Toward Whole-Body Connectomics.

Chung-Chuan Lo, Ann-Shyn Chiang
Author Information
  1. Chung-Chuan Lo: Brain Research Center, cclo@mx.nthu.edu.tw aschiang@life.nthu.edu.tw. ORCID
  2. Ann-Shyn Chiang: Brain Research Center, cclo@mx.nthu.edu.tw aschiang@life.nthu.edu.tw. ORCID

Abstract

Recent advances in neuro-technologies have revolutionized knowledge of brain structure and functions. Governments and private organizations worldwide have initiated several large-scale brain connectome projects, to further understand how the brain works at the systems levels. Most recent projects focus on only brain neurons, with the exception of an early effort to reconstruct the 302 neurons that comprise the whole body of the small worm, Caenorhabditis elegans However, to fully elucidate the neural circuitry of complex behavior, it is crucial to understand brain interactions with the whole body, which can be achieved only by mapping the whole-body connectome. In this article, we discuss the current state of connectomics study, focusing on novel optical approaches and related imaging technologies. We also discuss the challenges encountered by scientists who endeavor to map these whole-body connectomes in large animals.

References

  1. Neuron. 1999 Mar;22(3):451-61 [PMID: 10197526]
  2. J Neurobiol. 2001 May;47(2):81-92 [PMID: 11291099]
  3. Trends Neurosci. 2001 May;24(5):251-4 [PMID: 11311363]
  4. Anat Embryol (Berl). 2001 Oct;204(4):255-65 [PMID: 11720232]
  5. J Comp Neurol. 2001 Nov 5;440(1):1-11 [PMID: 11745603]
  6. Methods. 2003 May;30(1):86-93 [PMID: 12695106]
  7. Science. 2004 Aug 13;305(5686):1007-9 [PMID: 15310904]
  8. PLoS Biol. 2004 Nov;2(11):e329 [PMID: 15514700]
  9. Cell. 2005 Apr 8;121(1):141-52 [PMID: 15820685]
  10. Cell. 2005 May 6;121(3):479-92 [PMID: 15882628]
  11. Nat Neurosci. 2005 Sep;8(9):1263-8 [PMID: 16116447]
  12. Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13081-6 [PMID: 16141335]
  13. PLoS Comput Biol. 2005 Sep;1(4):e42 [PMID: 16201007]
  14. Nat Rev Neurosci. 2006 Feb;7(2):153-60 [PMID: 16429124]
  15. Nat Methods. 2006 Oct;3(10):793-5 [PMID: 16896339]
  16. Science. 2006 Sep 15;313(5793):1642-5 [PMID: 16902090]
  17. Neuron. 2007 Mar 1;53(5):639-47 [PMID: 17329205]
  18. Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5163-8 [PMID: 17360345]
  19. Nat Methods. 2007 Apr;4(4):331-6 [PMID: 17384643]
  20. Nature. 2007 Apr 5;446(7136):633-9 [PMID: 17410168]
  21. Brain Res Rev. 2007 Aug;55(1):8-16 [PMID: 17490748]
  22. Neuron. 2007 Jul 5;55(1):25-36 [PMID: 17610815]
  23. J Neural Eng. 2007 Sep;4(3):S143-56 [PMID: 17873414]
  24. Nat Methods. 2007 Nov;4(11):943-50 [PMID: 17965719]
  25. Nature. 2007 Nov 1;450(7166):56-62 [PMID: 17972876]
  26. Opt Lett. 1998;23(9):655-7 [PMID: 18087301]
  27. Neuron. 2008 Feb 7;57(3):353-63 [PMID: 18255029]
  28. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3593-8 [PMID: 18292226]
  29. Nat Rev Neurosci. 2008 Jun;9(6):417-22 [PMID: 18446160]
  30. J Microsc. 2008 Jul;231(Pt 1):134-43 [PMID: 18638197]
  31. Neuron. 2009 Feb 12;61(3):373-84 [PMID: 19217375]
  32. J Comp Neurol. 2009 Apr 10;513(5):532-41 [PMID: 19226510]
  33. J Neurosci. 2009 Mar 18;29(11):3343-53 [PMID: 19295141]
  34. Curr Opin Neurobiol. 2008 Dec;18(6):617-23 [PMID: 19349161]
  35. Opt Express. 2007 Aug 20;15(17):10991-8 [PMID: 19547456]
  36. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):15025-30 [PMID: 19706471]
  37. Opt Lett. 1994 Jun 1;19(11):780-2 [PMID: 19844443]
  38. Nature. 2010 Jul 29;466(7306):622-6 [PMID: 20613723]
  39. J Neurosci. 2010 Jul 14;30(28):9341-6 [PMID: 20631162]
  40. Science. 2010 Dec 3;330(6009):1404-8 [PMID: 21051596]
  41. Brain Res Rev. 2011 Jun 24;67(1-2):94-102 [PMID: 21118703]
  42. Curr Biol. 2011 Jan 11;21(1):1-11 [PMID: 21129968]
  43. Neuron. 2010 Dec 9;68(5):843-56 [PMID: 21144999]
  44. Nat Methods. 2011 Feb;8(2):147-52 [PMID: 21240279]
  45. J Comp Neurol. 2011 Apr 1;519(5):807-33 [PMID: 21280038]
  46. Nat Methods. 2011 Mar;8(3):260-6 [PMID: 21297619]
  47. Nat Methods. 2011 Mar;8(3):253-9 [PMID: 21297621]
  48. Nat Methods. 2011 May;8(5):417-23 [PMID: 21378978]
  49. Nat Methods. 2011 Jun;8(6):493-500 [PMID: 21532582]
  50. Bioinformatics. 2011 Jul 1;27(13):i239-47 [PMID: 21685076]
  51. Front Neurosci. 2011 May 31;5:73 [PMID: 21747754]
  52. Nature. 2011 Jul 27;477(7363):171-8 [PMID: 21796121]
  53. Nat Neurosci. 2011 Aug 30;14(11):1481-8 [PMID: 21878933]
  54. Curr Opin Neurobiol. 2012 Jun;22(3):537-44 [PMID: 22079494]
  55. Nat Methods. 2011 Dec 04;9(1):96-102 [PMID: 22138823]
  56. Curr Opin Neurobiol. 2012 Feb;22(1):162-9 [PMID: 22221862]
  57. Nat Protoc. 2012 Jan 12;7(2):193-206 [PMID: 22240582]
  58. Nat Methods. 2012 Jan 15;9(3):255-8 [PMID: 22245809]
  59. Neuron. 2012 Jan 26;73(2):214-8 [PMID: 22284177]
  60. Bioinformatics. 2012 May 1;28(9):1262-9 [PMID: 22402613]
  61. Nature. 2012 Mar 22;484(7394):381-5 [PMID: 22441246]
  62. Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340 [PMID: 22462104]
  63. Front Neurosci. 2012 Apr 23;6:49 [PMID: 22536169]
  64. In Silico Biol. 2011-2012;11(3-4):137-47 [PMID: 22935967]
  65. PLoS Comput Biol. 2012;8(9):e1002658 [PMID: 23028271]
  66. Science. 2012 Nov 30;338(6111):1202-5 [PMID: 23197532]
  67. PLoS One. 2013;8(1):e54050 [PMID: 23342070]
  68. Development. 2013 Mar;140(6):1364-8 [PMID: 23444362]
  69. Front Neuroinform. 2013 Mar 18;7:4 [PMID: 23508232]
  70. Neuron. 2013 Mar 20;77(6):1017-38 [PMID: 23522039]
  71. Cold Spring Harb Protoc. 2013 Apr 01;2013(4):347-9 [PMID: 23547150]
  72. Nature. 2013 May 16;497(7449):332-7 [PMID: 23575631]
  73. Bioinformatics. 2013 Jun 1;29(11):1448-54 [PMID: 23603332]
  74. Proc Natl Acad Sci U S A. 2013 May 7;110(19):7898-903 [PMID: 23610406]
  75. Nat Methods. 2013 Jun;10(6):515-23 [PMID: 23722211]
  76. Science. 2013 Jun 14;340(6138):1338-41 [PMID: 23766327]
  77. Nat Neurosci. 2013 Aug;16(8):1154-61 [PMID: 23792946]
  78. Nat Methods. 2013 Jun;10(6):481 [PMID: 23866324]
  79. Nature. 2013 Aug 8;500(7461):175-81 [PMID: 23925240]
  80. Nat Neurosci. 2013 Oct;16(10):1499-508 [PMID: 23995068]
  81. Cell Rep. 2013 Sep 12;4(5):1049-59 [PMID: 24012754]
  82. Front Neuroinform. 2013 Oct 02;7:19 [PMID: 24106475]
  83. J Neurosci. 2014 Feb 5;34(6):2321-30 [PMID: 24501371]
  84. Neuroinformatics. 2014 Jul;12(3):487-507 [PMID: 24692020]
  85. Nature. 2014 Apr 10;508(7495):207-14 [PMID: 24695228]
  86. Science. 2014 Apr 4;344(6179):97-101 [PMID: 24700860]
  87. Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5367-72 [PMID: 24706830]
  88. Cell. 2014 Aug 14;158(4):945-958 [PMID: 25088144]
  89. Science. 2014 Aug 8;345(6197):668-73 [PMID: 25104385]
  90. Neuron. 2014 Sep 17;83(6):1249-52 [PMID: 25233306]
  91. Neuron. 2014 Sep 17;83(6):1329-34 [PMID: 25233315]
  92. Science. 2014 Oct 24;346(6208):1257998 [PMID: 25342811]
  93. Nat Neurosci. 2014 Nov;17(11):1510-7 [PMID: 25349916]
  94. Front Comput Neurosci. 2014 Nov 03;8:137 [PMID: 25404913]
  95. Cell. 2014 Nov 6;159(4):896-910 [PMID: 25417164]
  96. Cell. 2014 Nov 6;159(4):911-24 [PMID: 25417165]
  97. Wiley Interdiscip Rev Dev Biol. 2015 Mar-Apr;4(2):161-80 [PMID: 25491327]
  98. Elife. 2014 Dec 23;3:e04577 [PMID: 25535793]
  99. Elife. 2014 Dec 23;3:e04580 [PMID: 25535794]
  100. Methods. 2015 Feb;73:4-17 [PMID: 25536338]
  101. Science. 2015 Jan 30;347(6221):543-8 [PMID: 25592419]
  102. Science. 2015 Feb 13;347(6223):755-60 [PMID: 25678659]
  103. Nat Neurosci. 2015 Mar;18(3):351-9 [PMID: 25710837]
  104. Biomed Opt Express. 2015 Jan 13;6(2):514-23 [PMID: 25780741]
  105. Philos Trans R Soc Lond B Biol Sci. 2015 May 19;370(1668):null [PMID: 25823863]
  106. Curr Biol. 2015 May 18;25(10):1249-58 [PMID: 25866397]
  107. Nature. 2015 Apr 30;520(7549):633-9 [PMID: 25896325]
  108. Sci Rep. 2015 May 07;5:9808 [PMID: 25950610]
  109. Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):E2967-76 [PMID: 25964354]
  110. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  111. Nature. 2015 May 28;521(7553):452-9 [PMID: 26017444]
  112. Neuron. 2015 Jul 15;87(2):252-6 [PMID: 26182412]
  113. J Neurogenet. 2015;29(4):157-68 [PMID: 26223305]
  114. Nat Commun. 2015 Aug 11;6:7924 [PMID: 26263051]
  115. Nat Neurosci. 2015 Oct;18(10):1518-29 [PMID: 26368944]
  116. Nat Commun. 2015 Sep 15;6:8264 [PMID: 26372413]
  117. Nature. 2015 Oct 8;526(7572):258-62 [PMID: 26416731]
  118. Biomed Opt Express. 2015 Oct 13;6(11):4344-52 [PMID: 26601000]
  119. Nat Commun. 2015 Dec 04;6:10024 [PMID: 26635273]
  120. Sci Bull (Beijing). 2015;60:2107-2119 [PMID: 26740890]
  121. PLoS One. 2016 Jan 11;11(1):e0146581 [PMID: 26751378]
  122. Nat Neurosci. 2016 May;19(5):756-761 [PMID: 26950006]
  123. Neuron. 2016 Jul 20;91(2):293-311 [PMID: 27373836]
  124. Nat Biotechnol. 2016 Sep;34(9):987-92 [PMID: 27376584]
  125. Nat Methods. 2016 Oct;13(10):859-67 [PMID: 27548807]

MeSH Term

Animals
Connectome
Humans
Image Enhancement
Nerve Net
Neurons
Whole Body Imaging

Word Cloud

Created with Highcharts 10.0.0brainconnectomeprojectsunderstandneuronswholebodywhole-bodydiscussRecentadvancesneuro-technologiesrevolutionizedknowledgestructurefunctionsGovernmentsprivateorganizationsworldwideinitiatedseverallarge-scaleworkssystemslevelsrecentfocusexceptionearlyeffortreconstruct302comprisesmallwormCaenorhabditiselegansHoweverfullyelucidateneuralcircuitrycomplexbehaviorcrucialinteractionscanachievedmappingarticlecurrentstateconnectomicsstudyfocusingnovelopticalapproachesrelatedimagingtechnologiesalsochallengesencounteredscientistsendeavormapconnectomeslargeanimalsTowardWhole-BodyConnectomics

Similar Articles

Cited By