Finding Direction in the Search for Selection.

Grant Thiltgen, Mario Dos Reis, Richard A Goldstein
Author Information
  1. Grant Thiltgen: Institute of Child Health, University College London, London, UK.
  2. Mario Dos Reis: The School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
  3. Richard A Goldstein: Division of Infection & Immunity, University College London, London, UK. r.goldstein@ucl.ac.uk. ORCID

Abstract

Tests for positive selection have mostly been developed to look for diversifying selection where change away from the current amino acid is often favorable. However, in many cases we are interested in directional selection where there is a shift toward specific amino acids, resulting in increased fitness in the species. Recently, a few methods have been developed to detect and characterize directional selection on a molecular level. Using the results of evolutionary simulations as well as HIV drug resistance data as models of directional selection, we compare two such methods with each other, as well as against a standard method for detecting diversifying selection. We find that the method to detect diversifying selection also detects directional selection under certain conditions. One method developed for detecting directional selection is powerful and accurate for a wide range of conditions, while the other can generate an excessive number of false positives.

Keywords

References

  1. Mol Biol Evol. 2015 Apr;32(4):1097-108 [PMID: 25576365]
  2. Mol Biol Evol. 2006 Oct;23(10):1937-45 [PMID: 16864604]
  3. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14512-7 [PMID: 11734650]
  4. Genetics. 1998 Mar;148(3):929-36 [PMID: 9539414]
  5. Top Antivir Med. 2014 Jun-Jul;22(3):642-50 [PMID: 25101529]
  6. Nature. 1997 Jan 9;385(6612):151-4 [PMID: 8990116]
  7. Mol Biol Evol. 2008 Sep;25(9):1809-24 [PMID: 18511426]
  8. Gene. 2002 Oct 30;300(1-2):43-51 [PMID: 12468084]
  9. Mol Biol Evol. 1996 May;13(5):685-90 [PMID: 8676743]
  10. Bioinformatics. 2003 Mar 22;19(5):671-2 [PMID: 12651734]
  11. J Mol Evol. 1985;22(2):160-74 [PMID: 3934395]
  12. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  13. Genetics. 2013 Feb;193(2):557-64 [PMID: 23222651]
  14. Mol Biol Evol. 1989 Sep;6(5):447-59 [PMID: 2796726]
  15. Mol Biol Evol. 2011 Jun;28(6):1755-67 [PMID: 21109586]
  16. Mol Biol Evol. 2002 Jun;19(6):908-17 [PMID: 12032247]
  17. Mol Biol Evol. 2005 Apr;22(4):1107-18 [PMID: 15689528]
  18. BMC Evol Biol. 2007 Feb 08;7 Suppl 1:S10 [PMID: 17288568]
  19. Genome Res. 2004 Jun;14(6):1188-90 [PMID: 15173120]
  20. Heredity (Edinb). 2007 Oct;99(4):364-73 [PMID: 17622265]
  21. Biochim Biophys Acta. 1975 Oct 20;405(2):442-51 [PMID: 1180967]
  22. Bioinformatics. 2005 Mar 1;21(5):676-9 [PMID: 15509596]
  23. Biol Lett. 2015 Apr;11(4):20141031 [PMID: 25854546]
  24. PLoS Comput Biol. 2012;8(5):e1002507 [PMID: 22589711]
  25. Mol Biol Evol. 1998 Jul;15(7):910-7 [PMID: 9656490]
  26. Genetics. 2012 Mar;190(3):1101-15 [PMID: 22209901]
  27. Nature. 1995 Jul 13;376(6536):125 [PMID: 7603560]
  28. Nature. 1988 Sep 8;335(6186):167-70 [PMID: 3412472]
  29. Mol Biochem Parasitol. 1995 Apr;71(1):99-113 [PMID: 7630387]
  30. Proc Natl Acad Sci U S A. 1989 Feb;86(3):958-62 [PMID: 2492668]
  31. Genetics. 2014 May;197(1):257-71 [PMID: 24532780]
  32. PLoS Comput Biol. 2009 Nov;5(11):e1000564 [PMID: 19911053]

Grants

  1. BB/P007562/1/Biotechnology and Biological Sciences Research Council
  2. MC_PC_13056/Medical Research Council
  3. MC_U117573805/Medical Research Council

MeSH Term

Biological Evolution
Computer Simulation
Drug Resistance, Viral
Evolution, Molecular
Genetic Variation
Models, Genetic
Phylogeny
Selection, Genetic
Sequence Analysis, Protein

Word Cloud

Created with Highcharts 10.0.0selectiondirectionaldevelopeddiversifyingmethodaminomethodsdetectwelldetectingconditionsTestspositivemostlylookchangeawaycurrentacidoftenfavorableHowevermanycasesinterestedshifttowardspecificacidsresultingincreasedfitnessspeciesRecentlycharacterizemolecularlevelUsingresultsevolutionarysimulationsHIVdrugresistancedatamodelscomparetwostandardfindalsodetectscertainOnepowerfulaccuratewiderangecangenerateexcessivenumberfalsepositivesFindingDirectionSearchSelectionDirectionalDiversifyingPositivedN/dS

Similar Articles

Cited By (7)