Multidimensional Recurrence Quantification Analysis (MdRQA) for the Analysis of Multidimensional Time-Series: A Software Implementation in MATLAB and Its Application to Group-Level Data in Joint Action.

Sebastian Wallot, Andreas Roepstorff, Dan Mønster
Author Information
  1. Sebastian Wallot: Max Planck Institute for Empirical Aesthetics Frankfurt, Germany.
  2. Andreas Roepstorff: Interacting Minds Centre, School of Culture and Society, Aarhus University Aarhus, Denmark.
  3. Dan Mønster: Interacting Minds Centre, School of Culture and Society, Aarhus UniversityAarhus, Denmark; Department of Economics and Business Economics, Aarhus UniversityAarhus, Denmark.

Abstract

We introduce Multidimensional Recurrence Quantification Analysis (MdRQA) as a tool to analyze multidimensional time-series data. We show how MdRQA can be used to capture the dynamics of high-dimensional signals, and how MdRQA can be used to assess coupling between two or more variables. In particular, we describe applications of the method in research on joint and collective action, as it provides a coherent analysis framework to systematically investigate dynamics at different group levels-from individual dynamics, to dyadic dynamics, up to global group-level of arbitrary size. The Appendix in Supplementary Material contains a software implementation in MATLAB to calculate MdRQA measures.

Keywords

References

  1. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Aug;66(2 Pt 2):026702 [PMID: 12241313]
  2. J Exp Psychol Hum Percept Perform. 2003 Apr;29(2):326-32 [PMID: 12760618]
  3. Chaos. 1998 Dec;8(4):861-871 [PMID: 12779793]
  4. Psychol Sci. 2007 May;18(5):407-13 [PMID: 17576280]
  5. Hum Mov Sci. 2007 Dec;26(6):867-91 [PMID: 17765345]
  6. Q J Exp Psychol (Hove). 2010 Nov;63(11):2220-30 [PMID: 20694920]
  7. PLoS One. 2010 Aug 17;5(8):e12166 [PMID: 20808907]
  8. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8514-9 [PMID: 21536887]
  9. Cogn Sci. 2005 Nov 12;29(6):1045-60 [PMID: 21702802]
  10. Front Psychol. 2011 Mar 09;2:38 [PMID: 21716606]
  11. PLoS One. 2011;6(9):e24893 [PMID: 21957466]
  12. Cogn Sci. 2012 Nov-Dec;36(8):1404-26 [PMID: 22984793]
  13. Science. 2012 Oct 26;338(6106):496-500 [PMID: 22997134]
  14. BMC Bioinformatics. 2014 May 22;15:157 [PMID: 24886131]
  15. Front Psychol. 2014 Jun 27;5:510 [PMID: 25018736]
  16. Top Cogn Sci. 2009 Apr;1(2):320-39 [PMID: 25164936]
  17. Cogn Sci. 2016 Jan;40(1):145-71 [PMID: 25988263]
  18. Physiol Behav. 2015 Oct 1;149:101-6 [PMID: 26037635]
  19. Cogn Sci. 2016 Sep;40(7):1797-1815 [PMID: 26452330]
  20. Physiol Behav. 2016 Mar 15;156:24-34 [PMID: 26773466]
  21. PLoS One. 2016 Dec 20;11(12):e0168306 [PMID: 27997558]
  22. J Appl Physiol (1985). 1994 Feb;76(2):965-73 [PMID: 8175612]
  23. Phys Rev A. 1992 Mar 15;45(6):3403-3411 [PMID: 9907388]

Word Cloud

Created with Highcharts 10.0.0MdRQAdynamicsMultidimensionalAnalysisRecurrenceQuantificationMATLABmultidimensionaltime-seriescanusedjointactionintroducetoolanalyzedatashowcapturehigh-dimensionalsignalsassesscouplingtwovariablesparticulardescribeapplicationsmethodresearchcollectiveprovidescoherentanalysisframeworksystematicallyinvestigatedifferentgrouplevels-fromindividualdyadicglobalgroup-levelarbitrarysizeAppendixSupplementaryMaterialcontainssoftwareimplementationcalculatemeasuresTime-Series:SoftwareImplementationApplicationGroup-LevelDataJointActioncorrelation

Similar Articles

Cited By