Can (should) theories of crowding be unified?

Mehmet N Agaoglu, Susana T L Chung
Author Information
  1. Mehmet N Agaoglu: School of Optometry, University of California, Berkeley, Berkeley, CA, USAmnagaoglu@gmail.com.
  2. Susana T L Chung: School of Optometry, University of California, Berkeley, Berkeley, CA, USAs.chung@berkeley.edu.

Abstract

Objects in clutter are difficult to recognize, a phenomenon known as crowding. There is little consensus on the underlying mechanisms of crowding, and a large number of models have been proposed. There have also been attempts at unifying the explanations of crowding under a single model, such as the weighted feature model of Harrison and Bex (2015) and the texture synthesis model of Rosenholtz and colleagues (Balas, Nakano, & Rosenholtz, 2009; Keshvari & Rosenholtz, 2016). The goal of this work was to test various models of crowding and to assess whether a unifying account can be developed. Adopting Harrison and Bex's (2015) experimental paradigm, we asked observers to report the orientation of two concentric C-stimuli. Contrary to the predictions of their model, observers' recognition accuracy was worse for the inner C-stimulus. In addition, we demonstrated that the stimulus paradigm used by Harrison and Bex has a crucial confounding factor, eccentricity, which limits its usage to a very narrow range of stimulus parameters. Nevertheless, reporting the orientations of both C-stimuli in this paradigm proved very useful in pitting different crowding models against each other. Specifically, we tested deterministic and probabilistic versions of averaging, substitution, and attentional resolution models as well as the texture synthesis model. None of the models alone was able to explain the entire set of data. Based on these findings, we discuss whether the explanations of crowding can (should) be unified.

References

  1. Neuron. 2002 Nov 14;36(4):739-50 [PMID: 12441061]
  2. Vision Res. 1979;19(11):1187-95 [PMID: 550578]
  3. J Vis. 2012 Jun 12;12(6):13 [PMID: 22693331]
  4. Atten Percept Psychophys. 2012 Feb;74(2):379-96 [PMID: 22160819]
  5. Vision Res. 2008 Feb;48(5):635-54 [PMID: 18226828]
  6. J Vis. 2009 Nov 19;9(12):13.1-18 [PMID: 20053104]
  7. Spat Vis. 1997;10(4):433-6 [PMID: 9176952]
  8. Spat Vis. 1994;8(2):255-79 [PMID: 7993878]
  9. Nat Neurosci. 2011 Aug 14;14(9):1195-201 [PMID: 21841776]
  10. Trends Cogn Sci. 2011 Apr;15(4):160-8 [PMID: 21420894]
  11. J Vis. 2013 Mar 22;13(4):17 [PMID: 23525133]
  12. Nat Neurosci. 2013 Jul;16(7):974-81 [PMID: 23685719]
  13. J Vis. 2014 Dec 30;14(6):11 [PMID: 25550071]
  14. J Exp Psychol Hum Percept Perform. 2014 Jun;40(3):1022-33 [PMID: 24364703]
  15. Vision Res. 1993 May;33(7):993-9 [PMID: 8506641]
  16. Nature. 1970 Apr 11;226(5241):177-8 [PMID: 5437004]
  17. Exp Brain Res. 1979;37(3):475-94 [PMID: 520438]
  18. Curr Biol. 2015 Dec 21;25(24):3213-9 [PMID: 26628010]
  19. Percept Psychophys. 1984 Nov;36(5):457-60 [PMID: 6533567]
  20. Vision Res. 2015 Oct;115(Pt A):23-39 [PMID: 26238247]
  21. Nat Neurosci. 2008 Oct;11(10):1129-35 [PMID: 18828191]
  22. Cogn Psychol. 2001 Nov;43(3):171-216 [PMID: 11689021]
  23. Optom Vis Sci. 1989 Nov;66(11):774-81 [PMID: 2616138]
  24. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13130-5 [PMID: 19617570]
  25. J Vis. 2012 Apr 20;12(4): [PMID: 22523401]
  26. J Vis. 2010 Jul 01;10(8):13 [PMID: 20884588]
  27. Vision Res. 1992 Apr;32(4):771-7 [PMID: 1413560]
  28. J Vis. 2002;2(2):167-77 [PMID: 12678590]
  29. J Vis. 2007 Nov 20;7(2):23.1-12 [PMID: 18217838]
  30. Curr Biol. 2016 May 9;26(9):R353-4 [PMID: 27166690]
  31. J Vis. 2016;16(3):39 [PMID: 26928055]
  32. Vision Res. 1992 Jul;32(7):1349-57 [PMID: 1455707]
  33. J Vis. 2009 Oct 29;9(11):28.1-16 [PMID: 20053091]
  34. J Vis. 2016;16(2):4 [PMID: 26968866]
  35. J Vis. 2004 Dec 30;4(12):1136-69 [PMID: 15669917]
  36. J Vis. 2015 Jan 08;15(1):15.1.4 [PMID: 25572350]
  37. Curr Opin Neurobiol. 2008 Aug;18(4):445-51 [PMID: 18835355]
  38. Nat Neurosci. 2012 Jan 08;15(3):463-9, S1-2 [PMID: 22231425]
  39. Curr Biol. 2016 May 9;26(9):R352-3 [PMID: 27166689]
  40. Spat Vis. 1997;10(4):437-42 [PMID: 9176953]
  41. J Vis. 2012 Mar 21;12(3): [PMID: 22438467]
  42. J Neurosci. 2015 Oct 21;35(42):14148-59 [PMID: 26490856]
  43. Behav Res Methods Instrum Comput. 2002 Nov;34(4):613-7 [PMID: 12564564]
  44. Nat Neurosci. 2001 Jul;4(7):739-44 [PMID: 11426231]
  45. Vision Res. 2001 Jun;41(14):1833-50 [PMID: 11369047]
  46. Nature. 1996 Sep 26;383(6598):334-7 [PMID: 8848045]
  47. J Vis. 2002;2(2):140-66 [PMID: 12678589]
  48. Am J Ophthalmol. 1958 Jul;46(1 Pt 2):102-13 [PMID: 13545337]
  49. J Vis. 2012 Sep 26;12(10):13 [PMID: 23019118]
  50. J Vis. 2013 Nov 08;13(13):10 [PMID: 24213598]
  51. J Vis. 2013 Jan 18;13(1):24 [PMID: 23335321]
  52. Front Psychol. 2012 Feb 06;3:13 [PMID: 22347200]
  53. J Math Psychol. 2000 Mar;44(1):92-107 [PMID: 10733859]

Grants

  1. R01 EY012810/NEI NIH HHS
  2. R01 EY017707/NEI NIH HHS

MeSH Term

Attention
Crowding
Humans
Orientation
Pattern Recognition, Visual

Word Cloud

Created with Highcharts 10.0.0crowdingmodelsmodelHarrisonRosenholtzparadigmunifyingexplanationsBex2015texturesynthesis&whethercanC-stimulistimulusObjectsclutterdifficultrecognizephenomenonknownlittleconsensusunderlyingmechanismslargenumberproposedalsoattemptssingleweightedfeaturecolleaguesBalasNakano2009Keshvari2016goalworktestvariousassessaccountdevelopedAdoptingBex'sexperimentalaskedobserversreportorientationtwoconcentricContrarypredictionsobservers'recognitionaccuracyworseinnerC-stimulusadditiondemonstratedusedcrucialconfoundingfactoreccentricitylimitsusagenarrowrangeparametersNeverthelessreportingorientationsprovedusefulpittingdifferentSpecificallytesteddeterministicprobabilisticversionsaveragingsubstitutionattentionalresolutionwellNonealoneableexplainentiresetdataBasedfindingsdiscussunifiedCantheoriesunified?

Similar Articles

Cited By