Angiotensin II reduces the surface abundance of K 1.5 channels in arterial myocytes to stimulate vasoconstriction.

Michael W Kidd, Simon Bulley, Jonathan H Jaggar
Author Information
  1. Michael W Kidd: University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
  2. Simon Bulley: University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
  3. Jonathan H Jaggar: University of Tennessee Health Science Center, Memphis, TN, 38163, USA. ORCID

Abstract

KEY POINTS: Several different voltage-dependent K (K ) channel isoforms are expressed in arterial smooth muscle cells (myocytes). Vasoconstrictors inhibit K currents, but the isoform selectivity and mechanisms involved are unclear. We show that angiotensin II (Ang II), a vasoconstrictor, stimulates degradation of K 1.5, but not K 2.1, channels through a protein kinase C- and lysosome-dependent mechanism, reducing abundance at the surface of mesenteric artery myocytes. The Ang II-induced decrease in cell surface K 1.5 channels reduces whole-cell K 1.5 currents and attenuates K 1.5 function in pressurized arteries. We describe a mechanism by which Ang II stimulates protein kinase C-dependent K 1.5 channel degradation, reducing the abundance of functional channels at the myocyte surface.
ABSTRACT: Smooth muscle cells (myocytes) of resistance-size arteries express several different voltage-dependent K (K ) channels, including K 1.5 and K 2.1, which regulate contractility. Myocyte K currents are inhibited by vasoconstrictors, including angiotensin II (Ang II), but the mechanisms involved are unclear. Here, we tested the hypothesis that Ang II inhibits K currents by reducing the plasma membrane abundance of K channels in myocytes. Angiotensin II (applied for 2 h) reduced surface and total K 1.5 protein in rat mesenteric arteries. In contrast, Ang II did not alter total or surface K 2.1, or K 1.5 or K 2.1 cellular distribution, measured as the percentage of total protein at the surface. Bisindolylmaleimide (BIM; a protein kinase C blocker), a protein kinase C inhibitory peptide or bafilomycin A (a lysosomal degradation inhibitor) each blocked the Ang II-induced decrease in total and surface K 1.5. Immunofluorescence also suggested that Ang II reduced surface K 1.5 protein in isolated myocytes; an effect inhibited by BIM. Arteries were exposed to Ang II or Ang II plus BIM (for 2 h), after which these agents were removed and contractility measurements performed or myocytes isolated for patch-clamp electrophysiology. Angiotensin II reduced both whole-cell K currents and currents inhibited by Psora-4, a K 1.5 channel blocker. Angiotensin II also reduced vasoconstriction stimulated by Psora-4 or 4-aminopyridine, another K channel inhibitor. These data indicate that Ang II activates protein kinase C, which stimulates K 1.5 channel degradation, leading to a decrease in surface K 1.5, a reduction in whole-cell K 1.5 currents and a loss of functional K 1.5 channels in myocytes of pressurized arteries.

Keywords

References

  1. Cardiovasc Res. 2009 Aug 1;83(3):493-500 [PMID: 19429666]
  2. Circ Res. 2005 Feb 4;96(2):216-24 [PMID: 15618540]
  3. Circ Res. 2001 Nov 23;89(11):1038-44 [PMID: 11717161]
  4. Sci Signal. 2015 Aug 18;8(390):ra83 [PMID: 26286025]
  5. J Physiol. 2003 Sep 15;551(Pt 3):751-63 [PMID: 12815189]
  6. Br J Pharmacol. 2007 Jul;151(6):758-70 [PMID: 17519950]
  7. Physiol Rev. 1999 Apr;79(2):387-423 [PMID: 10221985]
  8. Circ Res. 2009 Nov 6;105(10):948-55 [PMID: 19797702]
  9. J Biol Chem. 1995 Dec 1;270(48):28495-8 [PMID: 7499357]
  10. Mol Pharmacol. 2005 Nov;68(5):1254-70 [PMID: 16099841]
  11. Hypertension. 2012 Oct;60(4):1006-15 [PMID: 22949532]
  12. PLoS One. 2014 Jun 12;9(6):e98863 [PMID: 24921651]
  13. J Vasc Res. 1995 Nov-Dec;32(6):353-70 [PMID: 8562808]
  14. Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H1819-27 [PMID: 21856902]
  15. J Physiol. 2008 Oct 15;586(20):4793-813 [PMID: 18755741]
  16. Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2361-6 [PMID: 24464482]
  17. Am J Physiol Cell Physiol. 2015 Sep 15;309(6):C392-402 [PMID: 26179602]
  18. Circ Res. 2006 Apr 14;98(7):931-8 [PMID: 16527989]
  19. Circ Res. 1995 Aug;77(2):370-8 [PMID: 7542182]
  20. Am J Physiol Heart Circ Physiol. 2016 Jan 15;310(2):H137-52 [PMID: 26475588]
  21. Circ Res. 2014 Aug 1;115(4):423-31 [PMID: 24906643]
  22. Clin Sci (Lond). 2007 Apr;112(8):417-28 [PMID: 17346243]
  23. J Physiol. 2004 Apr 1;556(Pt 1):29-42 [PMID: 14742730]
  24. Pharmacol Rev. 2005 Dec;57(4):473-508 [PMID: 16382104]
  25. Am J Physiol Cell Physiol. 2016 Jun 1;310(11):C885-93 [PMID: 27076616]
  26. Exp Biol Med (Maywood). 2010 Mar;235(3):278-89 [PMID: 20404045]
  27. Am J Physiol. 1995 Apr;268(4 Pt 1):C799-822 [PMID: 7733230]
  28. Cardiovasc Res. 2011 Feb 1;89(2):282-9 [PMID: 20884640]
  29. Circ Res. 1997 May;80(5):607-16 [PMID: 9130441]
  30. J Physiol. 1998 Apr 1;508 ( Pt 1):199-209 [PMID: 9490839]
  31. Am J Physiol Cell Physiol. 2006 Aug;291(2):C348-56 [PMID: 16571867]
  32. J Biol Chem. 2007 Oct 5;282(40):29612-20 [PMID: 17673464]
  33. J Physiol. 2013 Oct 15;591(20):5031-46 [PMID: 23858011]
  34. Nat Chem Biol. 2013 Aug;9(8):507-13 [PMID: 23728494]
  35. Circulation. 2011 Aug 2;124(5):602-11 [PMID: 21747056]
  36. Am J Physiol Cell Physiol. 2010 Sep;299(3):C682-94 [PMID: 20610768]
  37. Nature. 2003 May 1;423(6935):42-8 [PMID: 12721619]
  38. J Physiol. 2010 Nov 15;588(Pt 22):4519-37 [PMID: 20876197]
  39. J Muscle Res Cell Motil. 1997 Feb;18(1):1-16 [PMID: 9147985]
  40. Mol Pharmacol. 2004 Jun;65(6):1364-74 [PMID: 15155830]
  41. Circ Res. 2012 Sep 14;111(7):842-53 [PMID: 22843785]
  42. Biol Pharm Bull. 2000 Dec;23(12):1450-4 [PMID: 11145176]
  43. Circ Res. 2006 Nov 24;99(11):1252-60 [PMID: 17068294]
  44. Circ Res. 2010 May 28;106(10):1603-12 [PMID: 20378853]
  45. J Am Soc Hypertens. 2009 Mar-Apr;3(2):84-95 [PMID: 20161229]
  46. Am J Physiol. 1999 Nov;277(5 Pt 1):G1055-63 [PMID: 10564112]
  47. Arterioscler Thromb Vasc Biol. 2010 Jun;30(6):1203-11 [PMID: 20299686]

Grants

  1. R01 HL067061/NHLBI NIH HHS
  2. R01 HL094378/NHLBI NIH HHS
  3. R01 HL110347/NHLBI NIH HHS

MeSH Term

Angiotensin II
Animals
Kv1.5 Potassium Channel
Male
Mesenteric Arteries
Muscle Cells
Rats, Sprague-Dawley
Shab Potassium Channels
Vasoconstriction

Chemicals

Kcnb1 protein, rat
Kv1.5 Potassium Channel
Shab Potassium Channels
Angiotensin II

Word Cloud

Created with Highcharts 10.0.0K15surfacemyocytesproteinAng IIcurrentschannelschannelIIdegradation2abundancearteriesreducedtotalmusclestimulatesreducingdecreasewhole-cellinhibitedAngiotensin IIBIMkinase Cvasoconstrictiondifferentvoltage-dependentarterialsmoothcellsmechanismsinvolvedunclearangiotensinkinasemechanismmesentericAng II-inducedreducespressurizedfunctionalincludingcontractility2 hblockerinhibitoralsoisolatedPsora-4KEYPOINTS:SeveralisoformsexpressedVasoconstrictorsinhibitisoformselectivityshowAngvasoconstrictorC-lysosome-dependentarterycellattenuatesfunctiondescribeC-dependentmyocyteABSTRACT:Smoothresistance-sizeexpressseveralregulateMyocytevasoconstrictorsangiotensin IItestedhypothesisinhibitsplasmamembraneappliedratcontrastaltercellulardistributionmeasuredpercentageBisindolylmaleimideinhibitorypeptidebafilomycin AlysosomalblockedImmunofluorescencesuggestedeffectArteriesexposedplusagentsremovedmeasurementsperformedpatch-clampelectrophysiologystimulated4-aminopyridineanotherdataindicateactivatesleadingreductionlossAngiotensinstimulateKV

Similar Articles

Cited By