Mobile-phone radiation-induced perturbation of gene-expression profiling, redox equilibrium and sporadic-apoptosis control in the ovary of Drosophila melanogaster.

Areti K Manta, Deppie Papadopoulou, Alexander P Polyzos, Adamantia F Fragopoulou, Aikaterini S Skouroliakou, Dimitris Thanos, Dimitrios J Stravopodis, Lukas H Margaritis
Author Information
  1. Areti K Manta: a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece.
  2. Deppie Papadopoulou: b Basic Research Center , Biomedical Research Foundation of the Academy of Athens , Athens , Greece.
  3. Alexander P Polyzos: b Basic Research Center , Biomedical Research Foundation of the Academy of Athens , Athens , Greece.
  4. Adamantia F Fragopoulou: a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece.
  5. Aikaterini S Skouroliakou: c Department of Energy Technology Engineering , Technological Educational Institute of Athens , Athens , Greece.
  6. Dimitris Thanos: b Basic Research Center , Biomedical Research Foundation of the Academy of Athens , Athens , Greece.
  7. Dimitrios J Stravopodis: a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece.
  8. Lukas H Margaritis: a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece.

Abstract

The daily use by people of wireless communication devices has increased exponentially in the last decade, begetting concerns regarding its potential health hazards. Drosophila melanogaster four days-old adult female flies were exposed for 30 min to radiation emitted by a commercial mobile phone at a SAR of 0.15 W/kg and a SAE of 270 J/kg. ROS levels and apoptotic follicles were assayed in parallel with a genome-wide microarrays analysis. ROS cellular contents were found to increase by 1.6-fold (x), immediately after the end of exposure, in follicles of pre-choriogenic stages (germarium - stage 10), while sporadically generated apoptotic follicles (germarium 2b and stages 7-9) presented with an averaged 2x upregulation in their sub-population mass, 4 h after fly's irradiation with mobile device. Microarray analysis revealed 168 genes being differentially expressed, 2 h post-exposure, in response to radiofrequency (RF) electromagnetic field-radiation exposure (≥1.25x, P < 0.05) and associated with multiple and critical biological processes, such as basic metabolism and cellular subroutines related to stress response and apoptotic death. Exposure of adult flies to mobile-phone radiation for 30 min has an immediate impact on ROS production in animal's ovary, which seems to cause a global, systemic and non-targeted transcriptional reprogramming of gene expression, 2 h post-exposure, being finally followed by induction of apoptosis 4 h after the end of exposure. Conclusively, this unique type of pulsed radiation, mainly being derived from daily used mobile phones, seems capable of mobilizing critical cytopathic mechanisms, and altering fundamental genetic programs and networks in D. melanogaster.

Keywords

References

  1. Bioelectromagnetics. 2006 May;27(4):295-306 [PMID: 16511873]
  2. Neurosci Lett. 2007 Jan 22;412(1):34-8 [PMID: 17187929]
  3. Int J Radiat Biol. 2016 Jun;92(6):338-50 [PMID: 27028625]
  4. Electromagn Biol Med. 2014 Jun;33(2):118-31 [PMID: 23781995]
  5. PLoS One. 2016 Sep 09;11(9):e0162675 [PMID: 27611438]
  6. Lancet. 2001 Nov 17;358(9294):1733 [PMID: 11728587]
  7. Mol Biol Cell. 2011 Sep;22(17):3231-41 [PMID: 21737674]
  8. Mutat Res. 2010 Jul 19;700(1-2):51-61 [PMID: 20472095]
  9. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  10. Appl Biochem Biotechnol. 2011 Jun;164(4):546-59 [PMID: 21240569]
  11. Oxid Med Cell Longev. 2016;2016:1245049 [PMID: 27478531]
  12. Am J Physiol Lung Cell Mol Physiol. 2000 Dec;279(6):L1005-28 [PMID: 11076791]
  13. Nucleic Acids Res. 2015 Jan;43(Database issue):D726-36 [PMID: 25348401]
  14. BMC Med Genet. 2012 Jan 25;13:7 [PMID: 22273362]
  15. Methods Enzymol. 2008;446:17-37 [PMID: 18603114]
  16. Electromagn Biol Med. 2016;35(2):186-202 [PMID: 26151230]
  17. Reprod Health. 2015 Aug 04;12:65 [PMID: 26239320]
  18. Nat Rev Mol Cell Biol. 2007 Jun;8(6):440-50 [PMID: 17522590]
  19. Mutat Res. 2013 Dec 12;758(1-2):95-103 [PMID: 24157427]
  20. Bioelectromagnetics. 1992;13(2):111-8 [PMID: 1590811]
  21. J Cell Physiol. 2008 Oct;217(1):215-27 [PMID: 18521822]
  22. Anat Histol Embryol. 2016 Jun;45(3):197-208 [PMID: 26171674]
  23. PLoS One. 2012;7(2):e32086 [PMID: 22348149]
  24. Nucleic Acids Res. 2009 Jan;37(1):1-13 [PMID: 19033363]
  25. Electromagn Biol Med. 2014 Sep;33(3):165-89 [PMID: 23915130]
  26. Proteomics. 2006 Sep;6(17):4745-54 [PMID: 16878293]
  27. Curr Biol. 2014 May 19;24(10):R453-62 [PMID: 24845678]
  28. Mol Biol Cell. 2000 Feb;11(2):511-21 [PMID: 10679010]
  29. Nucleic Acids Res. 2013 Jan;41(Database issue):D377-86 [PMID: 23193289]
  30. PLoS One. 2016 Apr 13;11(4):e0153308 [PMID: 27073885]
  31. Exp Gerontol. 2006 Jul;41(7):683-7 [PMID: 16581217]
  32. Proteomics. 2006 Sep;6(17):4732-8 [PMID: 16888767]
  33. Proteomics. 2006 Sep;6(17):4739-44 [PMID: 16933338]
  34. J Neurosci. 2002 Jun 15;22(12 ):4842-9 [PMID: 12077181]
  35. Physiol Plant. 2009 Aug;136(4):369-83 [PMID: 19493304]
  36. Nat Protoc. 2006;1(4):1725-31 [PMID: 17487155]
  37. Development. 2012 Nov;139(21):4029-39 [PMID: 22992958]
  38. Trends Cell Biol. 2013 Nov;23(11):567-74 [PMID: 23968895]
  39. Dev Biol (N Y 1985). 1985;1:85-126 [PMID: 3917207]
  40. J Cell Biol. 1987 Jul;105(1):199-206 [PMID: 2886508]
  41. Apoptosis. 2009 Aug;14(8):969-79 [PMID: 19533361]
  42. PLoS One. 2012;7(5):e36539 [PMID: 22666323]
  43. Electromagn Biol Med. 2016;35(1):40-53 [PMID: 25333897]
  44. Plant Signal Behav. 2012 Dec;7(12):1621-33 [PMID: 23072988]
  45. Proc Natl Acad Sci U S A. 2001 Oct 23;98 (22):12784-9 [PMID: 11675509]
  46. J Cell Biochem. 2003 May 1;89(1):48-55 [PMID: 12682907]
  47. Bioelectromagnetics. 2008 May;29(4):312-23 [PMID: 18175331]
  48. Int J Radiat Biol. 2014 May;90(5):357-62 [PMID: 24597749]
  49. Health Phys. 1998 Jul;75(1):51-5 [PMID: 9645665]
  50. Redox Biol. 2015 Dec;6:372-85 [PMID: 26339717]
  51. Cell Res. 2011 Jan;21(1):103-15 [PMID: 21187859]
  52. Environ Monit Assess. 2012 Apr;184(4):1813-21 [PMID: 21562792]
  53. Autophagy. 2009 Apr;5(3):298-302 [PMID: 19066465]
  54. Nat Protoc. 2013 Aug;8(8):1551-66 [PMID: 23868073]
  55. Physiol Rev. 2002 Jan;82(1):47-95 [PMID: 11773609]
  56. IUBMB Life. 2000 May;49(5):427-35 [PMID: 10902575]
  57. Rev Environ Health. 2013;28(2-3):97-106 [PMID: 24192496]
  58. Sci Total Environ. 2009 Oct 15;407(21):5543-7 [PMID: 19682728]
  59. Development. 2001 Apr;128(8):1443-55 [PMID: 11262243]
  60. Biochem J. 2007 Aug 1;405(3):559-68 [PMID: 17456048]
  61. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  62. IARC Monogr Eval Carcinog Risks Hum. 2013;102(Pt 2):1-460 [PMID: 24772662]
  63. Cell Death Differ. 2014 Mar;21(3):407-15 [PMID: 24162658]
  64. Sci Total Environ. 2007 Dec 15;388(1-3):78-89 [PMID: 17825879]
  65. Phys Rev Lett. 2005 Jul 1;95(1):015501 [PMID: 16090628]
  66. Bioelectromagnetics. 2008 Jul;29(5):371-9 [PMID: 18286519]
  67. Int J Fertil Steril. 2015 Apr-Jun;9(1):129-36 [PMID: 25918601]
  68. Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205 [PMID: 24214961]
  69. Methods Mol Biol. 2004;282:191-205 [PMID: 15105566]
  70. PLoS One. 2009 Jul 31;4(7):e6446 [PMID: 19649291]

MeSH Term

Animals
Apoptosis
Cell Phone
Drosophila melanogaster
Female
Gene Expression
Oogenesis
Ovary
Reactive Oxygen Species

Chemicals

Reactive Oxygen Species

Word Cloud

Created with Highcharts 10.0.0radiationROSmelanogastermobileapoptoticfolliclesexposureovarydailyDrosophilaadultflies30 min0microarraysanalysiscellularendstagesgermarium4 h2 hpost-exposureresponsecriticalstressdeathmobile-phoneseemsgeneexpressionapoptosisusepeoplewirelesscommunicationdevicesincreasedexponentiallylastdecadebegettingconcernsregardingpotentialhealthhazardsfourdays-oldfemaleexposedemittedcommercialphoneSAR15 W/kgSAE270 J/kglevelsassayedparallelgenome-widecontentsfoundincrease16-foldximmediatelypre-choriogenic-stage10sporadicallygenerated2b7-9presentedaveraged2xupregulationsub-populationmassfly'sirradiationdeviceMicroarrayrevealed168genesdifferentiallyexpressedradiofrequencyRFelectromagneticfield-radiation≥125xP<05associatedmultiplebiologicalprocessesbasicmetabolismsubroutinesrelatedExposureimmediateimpactproductionanimal'scauseglobalsystemicnon-targetedtranscriptionalreprogrammingfinallyfollowedinductionConclusivelyuniquetypepulsedmainlyderivedusedphonescapablemobilizingcytopathicmechanismsalteringfundamentalgeneticprogramsnetworksDMobile-phoneradiation-inducedperturbationgene-expressionprofilingredoxequilibriumsporadic-apoptosiscontrolcelldrosophilafollicleoogenesisoxidativetranscription

Similar Articles

Cited By