How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication.

Joseph T P Yeeles, Agnieska Janska, Anne Early, John F X Diffley
Author Information
  1. Joseph T P Yeeles: The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Potters Bar, Hertfordshire EN6 3LD, UK.
  2. Agnieska Janska: The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Potters Bar, Hertfordshire EN6 3LD, UK.
  3. Anne Early: The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Potters Bar, Hertfordshire EN6 3LD, UK.
  4. John F X Diffley: The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Potters Bar, Hertfordshire EN6 3LD, UK. Electronic address: john.diffley@crick.ac.uk.

Abstract

The eukaryotic replisome is a molecular machine that coordinates the Cdc45-MCM-GINS (CMG) replicative DNA helicase with DNA polymerases α, δ, and ε and other proteins to copy the leading- and lagging-strand templates at rates between 1 and 2 kb min. We have now reconstituted this sophisticated machine with purified proteins, beginning with regulated CMG assembly and activation. We show that replisome-associated factors Mrc1 and Csm3/Tof1 are crucial for in vivo rates of replisome progression. Additionally, maximal rates only occur when DNA polymerase ε catalyzes leading-strand synthesis together with its processivity factor PCNA. DNA polymerase δ can support leading-strand synthesis, but at slower rates. DNA polymerase δ is required for lagging-strand synthesis, but surprisingly also plays a role in establishing leading-strand synthesis, before DNA polymerase ε engagement. We propose that switching between these DNA polymerases also contributes to leading-strand synthesis under conditions of replicative stress.

References

  1. Genome Res. 2013 Apr;23(4):698-704 [PMID: 23241746]
  2. Mol Cell. 2017 Jan 5;65(1):117-130 [PMID: 27989438]
  3. Genes Dev. 2005 Aug 15;19(16):1905-19 [PMID: 16103218]
  4. Elife. 2015 Apr 14;4:e04988 [PMID: 25871847]
  5. Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):897-902 [PMID: 16418273]
  6. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10236-41 [PMID: 16798881]
  7. Nat Cell Biol. 2006 Apr;8(4):358-66 [PMID: 16531994]
  8. Nature. 2012 Mar 14;483(7390):434-8 [PMID: 22419157]
  9. J Biol Chem. 2002 Mar 8;277(10):7889-96 [PMID: 11756442]
  10. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20240-5 [PMID: 19910535]
  11. Mol Cell. 2008 Apr 25;30(2):137-44 [PMID: 18439893]
  12. Nature. 2007 Jan 18;445(7125):281-5 [PMID: 17167417]
  13. Mol Cell. 2006 Feb 17;21(4):581-7 [PMID: 16483939]
  14. Mol Syst Biol. 2010;6:353 [PMID: 20212525]
  15. Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14085-90 [PMID: 15371597]
  16. Mol Biol Cell. 2007 Oct;18(10):3894-902 [PMID: 17652453]
  17. Mol Biol Cell. 2007 Aug;18(8):3059-67 [PMID: 17522385]
  18. Cell. 1988 Apr 8;53(1):117-26 [PMID: 2894900]
  19. J Biol Chem. 2016 Mar 11;291(11):5879-88 [PMID: 26719337]
  20. Nat Struct Mol Biol. 2014 Aug;21(8):664-70 [PMID: 24997598]
  21. EMBO J. 2012 May 2;31(9):2195-206 [PMID: 22433841]
  22. Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15390-5 [PMID: 25313033]
  23. Cell. 2009 Nov 13;139(4):719-30 [PMID: 19896182]
  24. Nat Struct Mol Biol. 2015 Mar;22(3):185-91 [PMID: 25622295]
  25. Curr Biol. 2013 Apr 8;23(7):543-52 [PMID: 23499531]
  26. Cold Spring Harb Perspect Biol. 2013 Dec 01;5(12):a010371 [PMID: 23881938]
  27. EMBO J. 2009 Oct 7;28(19):2992-3004 [PMID: 19661920]
  28. Nucleic Acids Res. 2007;35(19):6588-97 [PMID: 17905813]
  29. Mol Cell. 2015 Jul 16;59(2):163-75 [PMID: 26145172]
  30. Nat Struct Mol Biol. 2015 Mar;22(3):192-8 [PMID: 25664722]
  31. Cell Rep. 2015 Dec 22;13(11):2576-86 [PMID: 26686640]
  32. Mol Cell Biol. 2009 Sep;29(18):5008-19 [PMID: 19620285]
  33. Mol Cell. 2014 Nov 20;56(4):551-63 [PMID: 25449133]
  34. Genes Cells. 2009 Jul;14(7):807-20 [PMID: 19496828]
  35. Cell. 2000 Sep 15;102(6):745-51 [PMID: 11030618]
  36. J Biol Chem. 2009 Dec 4;284(49):34355-65 [PMID: 19819872]
  37. Mol Cell. 2008 Oct 10;32(1):106-17 [PMID: 18851837]
  38. Mol Cell. 2005 Sep 2;19(5):691-7 [PMID: 16137624]
  39. Mol Biol Cell. 2008 Jun;19(6):2373-8 [PMID: 18353973]
  40. EMBO J. 2006 Apr 19;25(8):1753-63 [PMID: 16601689]
  41. EMBO J. 2016 May 2;35(9):961-73 [PMID: 26912723]
  42. Nature. 2007 Jan 18;445(7125):328-32 [PMID: 17167415]
  43. Nature. 2015 Mar 26;519(7544):431-5 [PMID: 25739503]
  44. Mol Cell. 2004 Oct 22;16(2):173-85 [PMID: 15494305]
  45. Mol Cell. 1999 May;3(5):679-85 [PMID: 10360184]
  46. Mol Cell. 2005 Sep 2;19(5):699-706 [PMID: 16137625]
  47. Nature. 2003 Aug 28;424(6952):1078-83 [PMID: 12944972]

Grants

  1. /Wellcome Trust
  2. 15669/Cancer Research UK

MeSH Term

Cell Cycle Proteins
DNA Polymerase II
DNA Polymerase III
DNA Replication
DNA, Fungal
Proliferating Cell Nuclear Antigen
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Time Factors

Chemicals

Cell Cycle Proteins
Csm3p protein, S cerevisiae
DNA, Fungal
MRC1 protein, S cerevisiae
POL30 protein, S cerevisiae
Proliferating Cell Nuclear Antigen
Saccharomyces cerevisiae Proteins
DNA Polymerase II
DNA Polymerase III

Word Cloud

Created with Highcharts 10.0.0DNAsynthesisratespolymeraseleading-strandδεreplisomemachineCMGreplicativepolymerasesproteinslagging-strandalsoeukaryoticmolecularcoordinatesCdc45-MCM-GINShelicaseαcopyleading-templates12kbminnowreconstitutedsophisticatedpurifiedbeginningregulatedassemblyactivationshowreplisome-associatedfactorsMrc1Csm3/Tof1crucialin vivoprogressionAdditionallymaximaloccurcatalyzestogetherprocessivityfactorPCNAcansupportslowerrequiredsurprisinglyplaysroleestablishingengagementproposeswitchingcontributesconditionsstressEukaryoticReplisomeAchievesRapidEfficientReplication

Similar Articles

Cited By