Serum n-3 Tetracosapentaenoic Acid and Tetracosahexaenoic Acid Increase Following Higher Dietary α-Linolenic Acid but not Docosahexaenoic Acid.

Adam H Metherel, Anthony F Domenichiello, Alex P Kitson, Yu-Hong Lin, Richard P Bazinet
Author Information
  1. Adam H Metherel: Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College St., Room 307, Fitzgerald Building, Toronto, ON, M5S 3E2, Canada. adam.metherel@utoronto.ca.
  2. Anthony F Domenichiello: Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College St., Room 307, Fitzgerald Building, Toronto, ON, M5S 3E2, Canada.
  3. Alex P Kitson: Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College St., Room 307, Fitzgerald Building, Toronto, ON, M5S 3E2, Canada.
  4. Yu-Hong Lin: Section of Nutritional Neurosciences, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
  5. Richard P Bazinet: Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 150 College St., Room 307, Fitzgerald Building, Toronto, ON, M5S 3E2, Canada.

Abstract

n-3 Tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA) are believed to be important intermediates to docosahexaenoic acid (DHA, 22:6n-3) synthesis. The purpose of this study is to report for the first time serum concentrations of TPAn-3 and THA and their response to changing dietary α-linolenic acid (18:3n-3, ALA) and DHA. The responses will then be used in an attempt to predict the location of these fatty acids in relation to DHA in the biosynthetic pathway. Male Long Evans rats (n = 6 per group) were fed either a low (0.1% of total fatty acids), medium (3%) or high (10%) ALA diet with no added DHA, or a low (0%), medium (0.2%) or high (2%) DHA diet with a background of 2% ALA for 8 weeks post-weaning. Serum n-3 and n-6 polyunsaturated fatty acid (PUFA) concentrations (nmol/mL ± SEM) were determined by gas chromatography-mass spectrometry. Serum THA increases from low (0.3 ± 0.1) to medium (5.8 ± 0.7) but not from medium to high (4.6 ± 0.9) dietary ALA, while serum TPAn-3 increases with increasing dietary ALA from 0.09 ± 0.04 to 0.70 ± 0.09 to 1.23 ± 0.14 nmol/mL. Following DHA feeding, neither TPAn-3 or THA change across all dietary DHA intake levels. Serum TPAn-3 demonstrates a similar response to dietary DHA. In conclusion, this is the first study to demonstrate that increases in dietary ALA but not DHA increase serum TPAn-3 and THA in rats, suggesting that both fatty acids are precursors to DHA in the biosynthetic pathway.

Keywords

References

  1. J Lipid Res. 1992 Nov;33(11):1711-7 [PMID: 1464754]
  2. Am J Clin Nutr. 2014 Jul;100(1):105-12 [PMID: 24829492]
  3. Scand J Clin Lab Invest Suppl. 1993;215:61-74 [PMID: 8327852]
  4. J Biol Chem. 1991 Oct 25;266(30):19995-20000 [PMID: 1834642]
  5. Lipids. 2010 Sep;45(9):799-808 [PMID: 20734237]
  6. Age (Dordr). 2013 Aug;35(4):1091-104 [PMID: 22661299]
  7. PLoS One. 2013;8(3):e59617 [PMID: 23555727]
  8. ScientificWorldJournal. 2012;2012:851437 [PMID: 22489205]
  9. J Lipid Res. 1994 Nov;35(11):2032-40 [PMID: 7868981]
  10. Am J Clin Nutr. 2011 May;93(5):950-62 [PMID: 21367944]
  11. Am J Clin Nutr. 2000 Jan;71(1 Suppl):176S-8S [PMID: 10617968]
  12. Prostaglandins Leukot Essent Fatty Acids. 2011 Dec;85(6):361-8 [PMID: 21880477]
  13. Lipids. 1997 Oct;32(10):1075-83 [PMID: 9358434]
  14. Prog Lipid Res. 2015 Jul;59:54-66 [PMID: 25920364]
  15. Am J Clin Nutr. 1987 Oct;46(4):570-6 [PMID: 3310599]
  16. J Nutr. 2017 Jan;147(1):37-44 [PMID: 27852871]
  17. J Lipid Res. 2005 Sep;46(9):1974-82 [PMID: 15930513]
  18. FEBS Lett. 1998 Jul 10;431(1):1-6 [PMID: 9684854]
  19. Biochim Biophys Acta. 2016 Sep;1861(9 Pt A):997-1004 [PMID: 27263420]
  20. J Agric Food Chem. 2016 Feb 3;64(4):969-79 [PMID: 26758241]
  21. J Nutr Biochem. 2011 Aug;22(8):758-65 [PMID: 21111595]
  22. Nutr Res. 2012 Aug;32(8):547-56 [PMID: 22935337]
  23. FEBS Lett. 2016 Sep;590(18):3188-94 [PMID: 27543786]
  24. Nat Rev Neurosci. 2014 Dec;15(12):771-85 [PMID: 25387473]
  25. Am J Clin Nutr. 1982 Mar;35(3):617-23 [PMID: 6801965]
  26. J Lipid Res. 2007 Jan;48(1):152-64 [PMID: 17050905]
  27. Am J Clin Nutr. 2010 Nov;92(5):1040-51 [PMID: 20861171]
  28. Am J Clin Nutr. 2006 Jun;83(6 Suppl):1467S-1476S [PMID: 16841856]
  29. J Biol Chem. 1957 May;226(1):497-509 [PMID: 13428781]
  30. J Lipid Res. 1995 Nov;36(11):2433-43 [PMID: 8656081]
  31. J Neurochem. 2004 Dec;91(5):1125-37 [PMID: 15569256]
  32. FASEB J. 2015 Sep;29(9):3911-9 [PMID: 26065859]
  33. Mol Cell Biochem. 1997 Mar;168(1-2):101-15 [PMID: 9062899]

MeSH Term

Animals
Biosynthetic Pathways
Docosahexaenoic Acids
Gas Chromatography-Mass Spectrometry
Male
Rats
Rats, Long-Evans
alpha-Linolenic Acid

Chemicals

alpha-Linolenic Acid
Docosahexaenoic Acids
tetracosahexaenoic acid
tetracosapentaenoic acid

Word Cloud

Created with Highcharts 10.0.0DHAacidTPAn-3dietaryALATHA0Serumn-3fattymediumAcidTetracosapentaenoicserumacidslowhigh2%increasesstudyfirstconcentrationsresponsebiosyntheticpathwayratsdiet1FollowingTetracosahexaenoicα-LinolenicDocosahexaenoic24:5n-3tetracosahexaenoic24:6n-3believedimportantintermediatesdocosahexaenoic22:6n-3synthesispurposereporttimechangingα-linolenic18:3n-3responseswillusedattemptpredictlocationrelationMaleLongEvansn = 6pergroupfedeither1%total3%10%added0%background8 weekspost-weaningn-6polyunsaturatedPUFAnmol/mL ± SEMdeterminedgaschromatography-massspectrometry3 ± 058 ± 0746 ± 09increasing09 ± 00470 ± 00923 ± 014 nmol/mLfeedingneitherchangeacrossintakelevelsdemonstratessimilarconclusiondemonstrateincreasesuggestingprecursorsIncreaseHigherDietary

Similar Articles

Cited By