Development of tools to automate quantitative analysis of radiation damage in SAXS experiments.

Jonathan C Brooks-Bartlett, Rebecca A Batters, Charles S Bury, Edward D Lowe, Helen Mary Ginn, Adam Round, Elspeth F Garman
Author Information
  1. Jonathan C Brooks-Bartlett: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
  2. Rebecca A Batters: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
  3. Charles S Bury: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
  4. Edward D Lowe: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
  5. Helen Mary Ginn: Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.
  6. Adam Round: European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France.
  7. Elspeth F Garman: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.

Abstract

Biological small-angle X-ray scattering (SAXS) is an increasingly popular technique used to obtain nanoscale structural information on macromolecules in solution. However, radiation damage to the samples limits the amount of useful data that can be collected from a single sample. In contrast to the extensive analytical resources available for macromolecular crystallography (MX), there are relatively few tools to quantitate radiation damage for SAXS, some of which require a significant level of manual characterization, with the potential of leading to conflicting results from different studies. Here, computational tools have been developed to automate and standardize radiation damage analysis for SAXS data. RADDOSE-3D, a dose calculation software utility originally written for MX experiments, has been extended to account for the cylindrical geometry of the capillary tube, the liquid composition of the sample and the attenuation of the beam by the capillary material to allow doses to be calculated for many SAXS experiments. Furthermore, a library has been written to visualize and explore the pairwise similarity of frames. The calculated dose for the frame at which three subsequent frames are determined to be dissimilar is defined as the radiation damage onset threshold (RDOT). Analysis of RDOTs has been used to compare the efficacy of radioprotectant compounds to extend the useful lifetime of SAXS samples. Comparison of the RDOTs shows that, for radioprotectant compounds at 5 and 10 mM concentration, glycerol is the most effective compound. However, at 1 and 2 mM concentrations, dithiothreitol (DTT) appears to be most effective. Our newly developed visualization library contains methods that highlight the unusual radiation damage results given by SAXS data collected using higher concentrations of DTT: these observations should pave the way to the development of more sophisticated frame merging strategies.

Keywords

References

  1. J Synchrotron Radiat. 2014 Jan;21(Pt 1):203-8 [PMID: 24365937]
  2. Biophys J. 2013 Jan 8;104(1):227-36 [PMID: 23332075]
  3. Acta Crystallogr D Biol Crystallogr. 2015 Jan 1;71(Pt 1):45-56 [PMID: 25615859]
  4. Philos Trans A Math Phys Eng Sci. 2015 Mar 6;373(2036): [PMID: 25624517]
  5. J Synchrotron Radiat. 2013 Jul;20(Pt 4):660-4 [PMID: 23765312]
  6. J Synchrotron Radiat. 2009 Mar;16(Pt 2):143-51 [PMID: 19240326]
  7. Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20551-6 [PMID: 24297937]
  8. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4912-7 [PMID: 16549763]
  9. Nat Methods. 2015 May;12(5):419-22 [PMID: 25849637]
  10. Protein Pept Lett. 2016;23(3):217-31 [PMID: 26732245]
  11. J Appl Crystallogr. 2015 Jan 30;48(Pt 1):227-237 [PMID: 26089749]
  12. Curr Opin Struct Biol. 2013 Oct;23(5):748-54 [PMID: 23835228]
  13. J Synchrotron Radiat. 2015 Mar;22(2):273-9 [PMID: 25723929]
  14. J Appl Crystallogr. 2015 Mar 12;48(Pt 2):431-443 [PMID: 25844078]
  15. Free Radic Res. 2015 Apr;49(4):347-73 [PMID: 25812585]
  16. J Synchrotron Radiat. 2013 Jan;20(Pt 1):23-36 [PMID: 23254653]
  17. Structure. 2007 Dec;15(12):1531-41 [PMID: 18073104]
  18. Acta Crystallogr D Biol Crystallogr. 2015 Jan 1;71(Pt 1):67-75 [PMID: 25615861]
  19. Curr Protoc Protein Sci. 2012 Nov;Chapter 17:17.14.1-17.14.18 [PMID: 23151743]
  20. J Synchrotron Radiat. 2012 May;19(Pt 3):431-4 [PMID: 22514181]
  21. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):339-51 [PMID: 20382986]
  22. Sci Rep. 2015 May 29;5:10451 [PMID: 26022615]
  23. J Appl Crystallogr. 2016 May 04;49(Pt 3):880-890 [PMID: 27275138]
  24. J Synchrotron Radiat. 2003 Sep 1;10(Pt 5):398-404 [PMID: 12944630]
  25. J Synchrotron Radiat. 2004 Nov 1;11(Pt 6):462-8 [PMID: 15496733]
  26. Acta Crystallogr D Biol Crystallogr. 1999 Oct;55(Pt 10):1641-53 [PMID: 10531512]
  27. J Appl Crystallogr. 2012 Mar 15;45(Pt 2):342-350 [PMID: 25484842]

Grants

  1. /Wellcome Trust

MeSH Term

Humans
Macromolecular Substances
Proteins
Scattering, Small Angle
Software
X-Ray Diffraction

Chemicals

Macromolecular Substances
Proteins

Word Cloud

Created with Highcharts 10.0.0SAXSradiationdamagedatatoolsexperimentsusedHoweversamplesusefulcollectedsampleMXresultsdevelopedautomateanalysisRADDOSE-3DdosewrittencapillarycalculatedlibraryframesframeRDOTsradioprotectantcompoundseffectiveconcentrationsvisualizationBiologicalsmall-angleX-rayscatteringincreasinglypopulartechniqueobtainnanoscalestructuralinformationmacromoleculessolutionlimitsamountcansinglecontrastextensiveanalyticalresourcesavailablemacromolecularcrystallographyrelativelyquantitaterequiresignificantlevelmanualcharacterizationpotentialleadingconflictingdifferentstudiescomputationalstandardizecalculationsoftwareutilityoriginallyextendedaccountcylindricalgeometrytubeliquidcompositionattenuationbeammaterialallowdosesmanyFurthermorevisualizeexplorepairwisesimilaritythreesubsequentdetermineddissimilardefinedonsetthresholdRDOTAnalysiscompareefficacyextendlifetimeComparisonshows510 mMconcentrationglycerolcompound12 mMdithiothreitolDTTappearsnewlycontainsmethodshighlightunusualgivenusinghigherDTT:observationspavewaydevelopmentsophisticatedmergingstrategiesDevelopmentquantitativeCorMapradioprotectants

Similar Articles

Cited By