Identification and Characterization of the Sulfazecin Monobactam Biosynthetic Gene Cluster.

Rongfeng Li, Ryan A Oliver, Craig A Townsend
Author Information
  1. Rongfeng Li: Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
  2. Ryan A Oliver: Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
  3. Craig A Townsend: Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA. Electronic address: ctownsend@jhu.edu.

Abstract

The monobactams, exemplified by the natural product Sulfazecin, are the only class of ��-lactam antibiotics not inactivated by metallo-��-lactamases, which confer bacteria with extended-spectrum ��-lactam resistance. We screened a transposon mutagenesis library from Pseudomonas acidophila ATCC 31363 and isolated a Sulfazecin-deficient mutant that revealed a gene cluster encoding two non-ribosomal peptide synthetases (NRPSs), a methyltransferase, a sulfotransferase, and a dioxygenase. Three modules and an aberrant C-terminal thioesterase (TE) domain are distributed across the two NRPSs. Biochemical examination of the adenylation (A) domains provided evidence that L-2,3-diaminopropionate, not L-serine as previously thought, is the direct source of the ��-lactam ring of Sulfazecin. ATP/PPi exchange assay also revealed an unusual substrate selectivity shift of one A domain when expressed with or without the immediately upstream condensation domain. Gene inactivation analysis defined a cluster of 13 open reading frames sufficient for Sulfazecin production, precursor synthesis, self-resistance, and regulation. The identification of a key intermediate supported a proposed NRPS-mediated mechanism of Sulfazecin biosynthesis and ��-lactam ring formation distinct from the nocardicins, another NRPS-derived subclass of monocyclic ��-lactam. These findings will serve as the basis for further biosynthetic research and potential engineering of these important antibiotics.

Keywords

References

  1. Cell Chem Biol. 2016 Apr 21;23(4):462-71 [PMID: 27105282]
  2. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9082-6 [PMID: 9689037]
  3. J Biol Chem. 1998 Dec 4;273(49):32857-63 [PMID: 9830033]
  4. Eur J Clin Microbiol Infect Dis. 2015 Jul;34(7):1303-8 [PMID: 25864193]
  5. J Ind Microbiol Biotechnol. 2011 Nov;38(11):1747-60 [PMID: 21826462]
  6. Nucleic Acids Res. 2015 Jul 1;43(W1):W237-43 [PMID: 25948579]
  7. Rev Infect Dis. 1985 Nov-Dec;7 Suppl 4:S579-93 [PMID: 3909315]
  8. J Antibiot (Tokyo). 1987 Feb;40(2):135-8 [PMID: 3570960]
  9. Biochem Pharmacol. 2007 Dec 15;74(12):1686-701 [PMID: 17597585]
  10. J Am Chem Soc. 2013 Feb 6;135(5):1749-59 [PMID: 23330869]
  11. Arch Biochem Biophys. 2001 Jun 15;390(2):149-57 [PMID: 11396917]
  12. Adv Appl Microbiol. 1986;31:181-205 [PMID: 3521210]
  13. J Biol Chem. 1987 May 25;262(15):7374-82 [PMID: 3034891]
  14. Protein Sci. 2016 Apr;25(4):787-803 [PMID: 26813250]
  15. Nat Prod Rep. 2003 Jun;20(3):275-87 [PMID: 12828367]
  16. Chem Biol. 2014 Mar 20;21(3):379-88 [PMID: 24485762]
  17. J Biol Chem. 2003 Oct 17;278(42):40996-1002 [PMID: 12890666]
  18. Methods Enzymol. 1975;43:585-602 [PMID: 166283]
  19. Nucleic Acids Res. 2005 Oct 12;33(18):5799-808 [PMID: 16221976]
  20. Chem Biol. 1999 Aug;6(8):493-505 [PMID: 10421756]
  21. J Antibiot (Tokyo). 1982 Feb;35(2):184-8 [PMID: 6978877]
  22. Chem Biol. 2011 May 27;18(5):655-64 [PMID: 21609846]
  23. Biochem J. 1980 Feb 15;186(2):613-6 [PMID: 7378068]
  24. BMC Microbiol. 2011 Sep 09;11:199 [PMID: 21906287]
  25. Bioorg Med Chem. 1996 Jul;4(7):1059-64 [PMID: 8831977]
  26. J Biol Chem. 2013 Jan 18;288(3):1991-2003 [PMID: 23192349]
  27. Nature. 2013 Jul 25;499(7459):394-6 [PMID: 23887414]
  28. Chem Biol. 2000 Mar;7(3):211-24 [PMID: 10712928]
  29. Antimicrob Agents Chemother. 1982 Apr;21(4):558-64 [PMID: 6805424]
  30. PLoS One. 2012;7(5):e37487 [PMID: 22655051]
  31. Gene. 1988;62(2):187-96 [PMID: 3130293]
  32. J Antibiot (Tokyo). 1976 May;29(5):492-500 [PMID: 956036]
  33. Antimicrob Agents Chemother. 2003 May;47(5):1522-8 [PMID: 12709317]
  34. Nat Prod Rep. 2016 Feb;33(2):183-202 [PMID: 25642666]
  35. Methods Enzymol. 2009;458:181-217 [PMID: 19374984]
  36. J Antibiot (Tokyo). 1981 Jun;34(6):621-7 [PMID: 7024230]
  37. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11660-5 [PMID: 14500782]
  38. Biochem J. 1982 Jun 1;203(3):791-3 [PMID: 7115317]
  39. Biochemistry. 2010 Oct 19;49(41):8815-7 [PMID: 20845982]
  40. Future Med Chem. 2013 Jul;5(11):1243-63 [PMID: 23859206]
  41. Antimicrob Agents Chemother. 2003 Sep;47(9):2823-30 [PMID: 12936980]
  42. Nature. 2015 Apr 16;520(7547):383-7 [PMID: 25624104]
  43. Gene. 1998 May 28;212(1):77-86 [PMID: 9661666]
  44. J Antibiot (Tokyo). 1985 Jan;38(1):119-21 [PMID: 3871760]
  45. Biochemistry. 2010 Nov 23;49(46):9946-7 [PMID: 20964365]
  46. Chem Biol. 2015 May 21;22(5):640-8 [PMID: 26000750]
  47. Antimicrob Agents Chemother. 1983 Apr;23(4):598-602 [PMID: 6859838]

Grants

  1. R01 AI014937/NIAID NIH HHS
  2. R01 AI121072/NIAID NIH HHS
  3. R37 AI014937/NIAID NIH HHS
  4. R56 AI014937/NIAID NIH HHS

MeSH Term

Drug Resistance, Multiple, Bacterial
Molecular Conformation
Monobactams
Multigene Family
Peptide Synthases
Pseudomonas
beta-Lactams

Chemicals

Monobactams
beta-Lactams
Peptide Synthases
sulfazecin

Word Cloud

Created with Highcharts 10.0.0��-lactamsulfazecindomainnaturalproductantibioticsrevealedclustertwonon-ribosomalpeptideNRPSssulfotransferaseringGenebiosynthesismonobactamsexemplifiedclassinactivatedmetallo-��-lactamasesconferbacteriaextended-spectrumresistancescreenedtransposonmutagenesislibraryPseudomonasacidophilaATCC31363isolatedsulfazecin-deficientmutantgeneencodingsynthetasesmethyltransferasedioxygenaseThreemodulesaberrantC-terminalthioesteraseTEdistributedacrossBiochemicalexaminationadenylationdomainsprovidedevidenceL-23-diaminopropionateL-serinepreviouslythoughtdirectsourceATP/PPiexchangeassayalsounusualsubstrateselectivityshiftoneexpressedwithoutimmediatelyupstreamcondensationinactivationanalysisdefined13openreadingframessufficientproductionprecursorsynthesisself-resistanceregulationidentificationkeyintermediatesupportedproposedNRPS-mediatedmechanismformationdistinctnocardicinsanotherNRPS-derivedsubclassmonocyclicfindingswillservebasisbiosyntheticresearchpotentialengineeringimportantIdentificationCharacterizationSulfazecinMonobactamBiosyntheticClusterantibioticmetallo-��-lactamasesynthetase

Similar Articles

Cited By