Accelerating Bayesian inference for evolutionary biology models.

Xavier Meyer, Bastien Chopard, Nicolas Salamin
Author Information
  1. Xavier Meyer: Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
  2. Bastien Chopard: Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland.
  3. Nicolas Salamin: Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.

Abstract

Motivation: Bayesian inference is widely used nowadays and relies largely on Markov chain Monte Carlo (MCMC) methods. Evolutionary biology has greatly benefited from the developments of MCMC methods, but the design of more complex and realistic models and the ever growing availability of novel data is pushing the limits of the current use of these methods.
Results: We present a parallel Metropolis-Hastings (M-H) framework built with a novel combination of enhancements aimed towards parameter-rich and complex models. We show on a parameter-rich macroevolutionary model increases of the sampling speed up to 35 times with 32 processors when compared to a sequential M-H process. More importantly, our framework achieves up to a twentyfold faster convergence to estimate the posterior probability of phylogenetic trees using 32 processors when compared to the well-known software MrBayes for Bayesian inference of phylogenetic trees.
Availability and Implementation: https://bitbucket.org/XavMeyer/hogan.
Contact: nicolas.salamin@unil.ch.
Supplementary information: Supplementary data are available at Bioinformatics online.

References

  1. New Phytol. 2015 Jul;207(2):425-36 [PMID: 25619401]
  2. Syst Biol. 2006 Apr;55(2):195-207 [PMID: 16522570]
  3. Genetics. 2000 May;155(1):431-49 [PMID: 10790415]
  4. Syst Biol. 2012 Jul;61(4):579-93 [PMID: 22223445]
  5. Syst Biol. 2013 Jul;62(4):611-5 [PMID: 23564032]
  6. Syst Biol. 2012 May;61(3):539-42 [PMID: 22357727]
  7. Mol Ecol. 2011 Apr;20(7):1450-62 [PMID: 21352386]
  8. Syst Biol. 2008 Feb;57(1):86-103 [PMID: 18278678]
  9. Bioinformatics. 2014 May 1;30(9):1241-9 [PMID: 24413673]
  10. PLoS Biol. 2006 May;4(5):e88 [PMID: 16683862]
  11. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15324-8 [PMID: 14663152]
  12. Mol Biol Evol. 2012 Aug;29(8):1969-73 [PMID: 22367748]
  13. Evolution. 2012 Aug;66(8):2369-83 [PMID: 22834738]
  14. Syst Biol. 2014 May;63(3):349-67 [PMID: 24510972]
  15. Mol Phylogenet Evol. 2011 Nov;61(2):543-83 [PMID: 21723399]
  16. Mol Biol Evol. 2009 Aug;26(8):1879-88 [PMID: 19423664]
  17. Bioinformatics. 2006 Mar 15;22(6):768-70 [PMID: 16410317]
  18. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1321-6 [PMID: 23297233]
  19. Mol Biol Evol. 2014 Oct;31(10):2553-6 [PMID: 25135941]

MeSH Term

Algorithms
Bayes Theorem
Biological Evolution
Fossils
Models, Biological
Phylogeny
Plants
Software

Word Cloud

Created with Highcharts 10.0.0BayesianinferencemethodsmodelsMCMCbiologycomplexnoveldataM-Hframeworkparameter-rich32processorscomparedphylogenetictreesMotivation:widelyusednowadaysrelieslargelyMarkovchainMonteCarloEvolutionarygreatlybenefiteddevelopmentsdesignrealisticevergrowingavailabilitypushinglimitscurrentuseResults:presentparallelMetropolis-Hastingsbuiltcombinationenhancementsaimedtowardsshowmacroevolutionarymodelincreasessamplingspeed35timessequentialprocessimportantlyachievestwentyfoldfasterconvergenceestimateposteriorprobabilityusingwell-knownsoftwareMrBayesAvailabilityImplementation:https://bitbucketorg/XavMeyer/hoganContact:nicolassalamin@unilchSupplementaryinformation:SupplementaryavailableBioinformaticsonlineAcceleratingevolutionary

Similar Articles

Cited By