Comparative Transcriptome Analysis between Broccoli () and Wild Cabbage ( Guss.) in Response to during Different Infection Stages.

Xiaoli Zhang, Yumei Liu, Zhiyuan Fang, Zhansheng Li, Limei Yang, Mu Zhuang, Yangyong Zhang, Honghao Lv
Author Information
  1. Xiaoli Zhang: Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China.
  2. Yumei Liu: Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China.
  3. Zhiyuan Fang: Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China.
  4. Zhansheng Li: Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China.
  5. Limei Yang: Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China.
  6. Mu Zhuang: Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China.
  7. Yangyong Zhang: Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China.
  8. Honghao Lv: Group of Cabbage and Broccoli Breeding, Institute of Vegetables and Flowers - Chinese Academy of Agricultural Sciences Beijing, China.

Abstract

clubroot, one of the most devastating diseases to the Brassicaceae family, is caused by the obligate biotrophic pathogen . However, studies of the molecular basis of disease resistance are still poor especially in quantitative resistance. In the present paper, two previously identified genotypes, a clubroot-resistant genotype (wild cabbage, B2013) and a clubroot-susceptible genotype (broccoli, 90196) were inoculated by for 0 (T0), 7 (T7), and 14 (T14) day after inoculation (DAI). Gene expression pattern analysis suggested that response changes in transcript level of two genotypes under infection were mainly activated at the primary stage (T7). Based on the results of DEGs functional enrichments from two infection stages, genes associated with cell wall biosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction showed down-regulated at T14 compared to T7, indicating that defense responses to were induced earlier, and related pathways were repressed at T14. In addition, the genes related to NBS-LRR proteins, SA signal transduction, cell wall and phytoalexins biosynthesis, chitinase, Ca signals and RBOH proteins were mainly up-regulated in B2013 by comparing those of 90196, indicating the pathways of response defense to clubroot were activated in the resistant genotype. This is the first report about comparative transcriptome analysis for broccoli and its wild relative during the different stages of infection and the results should be useful for molecular assisted screening and breeding of clubroot-resistant genotypes.

Keywords

References

  1. Theor Appl Genet. 2008 Jul;117(2):191-202 [PMID: 18427770]
  2. Trends Plant Sci. 2012 Jan;17(1):22-31 [PMID: 22112386]
  3. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  4. Biotechnol Lett. 2012 Oct;34(10):1921-8 [PMID: 22760177]
  5. Biochem Mol Biol Educ. 2007 May;35(3):206-10 [PMID: 21591090]
  6. J Biol Chem. 2000 Oct 27;275(43):33712-7 [PMID: 10922360]
  7. BMC Genomics. 2016 Mar 31;17:272 [PMID: 27036196]
  8. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  9. Genet Mol Biol. 2013 Dec;36(4):540-6 [PMID: 24385858]
  10. Annu Rev Phytopathol. 2004;42:185-209 [PMID: 15283665]
  11. Plant Sci. 2011 Oct;181(4):342-6 [PMID: 21889039]
  12. BMC Genomics. 2014 Dec 23;15:1166 [PMID: 25532522]
  13. Funct Integr Genomics. 2013 Jun;13(2):191-205 [PMID: 23420032]
  14. Funct Plant Biol. 2011 Jun;38(6):462-478 [PMID: 32480901]
  15. J Agric Food Chem. 2015 Sep 9;63(35):7819-29 [PMID: 26264830]
  16. Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13431-6 [PMID: 11606766]
  17. Int J Mol Sci. 2012;13(5):5832-5843 [PMID: 22754334]
  18. Plant Biotechnol J. 2007 Mar;5(2):313-24 [PMID: 17309686]
  19. Plant Physiol. 2008 Apr;146(4):2008-19 [PMID: 18305204]
  20. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  21. Sci Rep. 2015 Jun 18;5:11153 [PMID: 26084520]
  22. Plant Physiol. 2009 Aug;150(4):1723-32 [PMID: 19525323]
  23. Mol Plant Microbe Interact. 2006 May;19(5):480-94 [PMID: 16673935]
  24. Plant Physiol. 2004 Dec;136(4):3864-76 [PMID: 15591444]
  25. Plant J. 2003 Feb;33(4):775-92 [PMID: 12609049]
  26. Plant Physiol. 2001 Mar;125(3):1442-9 [PMID: 11244123]
  27. Plant Cell Physiol. 2014 Feb;55(2):392-411 [PMID: 24285749]
  28. Environ Sci Technol. 2016 Jun 21;50(12):6485-94 [PMID: 27228483]
  29. BMC Genomics. 2014 Jan 03;15:3 [PMID: 24383931]
  30. J Exp Bot. 2011 Nov;62(15):5607-21 [PMID: 21862479]
  31. Eur J Pharm Sci. 2006 Sep;29(1):1-13 [PMID: 16716572]
  32. Plant J. 1993 Dec;4(6):1003-10 [PMID: 7904213]
  33. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  34. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  35. New Phytol. 2001 Jul;151(1):7-33 [PMID: 33873376]
  36. Plant Cell. 2003 Sep;15(9):2181-91 [PMID: 12953119]
  37. Nature. 2007 Aug 9;448(7154):666-71 [PMID: 17637675]
  38. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  39. Front Plant Sci. 2016 Jan 05;6:1183 [PMID: 26779217]
  40. Mol Plant Microbe Interact. 2006 Dec;19(12):1431-43 [PMID: 17153927]
  41. Trends Plant Sci. 2012 Feb;17(2):73-90 [PMID: 22209038]
  42. Ying Yong Sheng Tai Xue Bao. 2004 Mar;15(3):537-9 [PMID: 15228012]
  43. Front Plant Sci. 2015 Jun 10;6:427 [PMID: 26113854]
  44. Curr Opin Plant Biol. 2007 Aug;10(4):342-8 [PMID: 17627866]
  45. New Phytol. 2011 Jan;189(1):335-46 [PMID: 20868395]
  46. Plant Physiol. 2000 Oct;124(2):563-78 [PMID: 11027707]
  47. Plant Physiol. 2001 Sep;127(1):360-71 [PMID: 11553763]
  48. Plant Cell Physiol. 2015 Nov;56(11):2158-68 [PMID: 26363358]
  49. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2531-6 [PMID: 17277084]
  50. Phytochemistry. 2001 Jul;57(6):929-67 [PMID: 11423142]
  51. New Phytol. 2011 Sep;191(4):1083-1094 [PMID: 21599669]
  52. FEBS J. 2011 Nov;278(22):4262-76 [PMID: 21955583]

Word Cloud

Created with Highcharts 10.0.0twogenotypesgenotypewildbroccoliT7T14infectionbiosynthesismolecularresistanceclubroot-resistantcabbageB201390196analysisresponsemainlyactivatedresultsstagesgenescellwallsignaltransductionindicatingdefenserelatedpathwaysproteinsclubrootClubrootonedevastatingdiseasesBrassicaceaefamilycausedobligatebiotrophicpathogenHoweverstudiesbasisdiseasestillpoorespeciallyquantitativepresentpaperpreviouslyidentifiedclubroot-susceptibleinoculated0T0714dayinoculationDAIGeneexpressionpatternsuggestedchangestranscriptlevelprimarystageBasedDEGsfunctionalenrichmentsassociatedglucosinolateplanthormoneshoweddown-regulatedcomparedresponsesinducedearlierrepressedadditionNBS-LRRSAphytoalexinschitinaseCasignalsRBOHup-regulatedcomparingresistantfirstreportcomparativetranscriptomerelativedifferentusefulassistedscreeningbreedingComparativeTranscriptomeAnalysisBroccoliWildCabbageGussResponseDifferentInfectionStagesPlasmodiophorabrassicaeRNAsequencing

Similar Articles

Cited By (35)