Accurate recapture identification for genetic mark-recapture studies with error-tolerant likelihood-based match calling and sample clustering.

Suresh A Sethi, Daniel Linden, John Wenburg, Cara Lewis, Patrick Lemons, Angela Fuller, Matthew P Hare
Author Information
  1. Suresh A Sethi: US Geological Survey, New York Cooperative Fish and Wildlife Research Unit , Cornell University , Ithaca, NY 14853 , USA. ORCID
  2. Daniel Linden: New York Cooperative Fish and Wildlife Research Unit , Department of Natural Resources, Cornell University , Ithaca, NY , USA.
  3. John Wenburg: Conservation Genetics Laboratory , US Fish and Wildlife Service , Anchorage, AK 99503 , USA.
  4. Cara Lewis: Conservation Genetics Laboratory , US Fish and Wildlife Service , Anchorage, AK 99503 , USA.
  5. Patrick Lemons: Marine Mammals Management , US Fish and Wildlife Service , Anchorage, AK 99503 , USA.
  6. Angela Fuller: US Geological Survey, New York Cooperative Fish and Wildlife Research Unit , Cornell University , Ithaca, NY 14853 , USA.
  7. Matthew P Hare: Department of Natural Resources , Cornell University , Ithaca, NY , USA.

Abstract

Error-tolerant likelihood-based match calling presents a promising technique to accurately identify recapture events in genetic mark-recapture studies by combining probabilities of latent genotypes and probabilities of observed genotypes, which may contain genotyping errors. Combined with clustering algorithms to group samples into sets of recaptures based upon pairwise match calls, these tools can be used to reconstruct accurate capture histories for mark-recapture modelling. Here, we assess the performance of a recently introduced error-tolerant likelihood-based match-calling model and sample clustering algorithm for genetic mark-recapture studies. We assessed both biallelic (i.e. single nucleotide polymorphisms; SNP) and multiallelic (i.e. microsatellite; MSAT) markers using a combination of simulation analyses and case study data on Pacific walrus () and fishers (). A novel two-stage clustering approach is demonstrated for genetic mark-recapture applications. First, repeat captures within a sampling occasion are identified. Subsequently, recaptures across sampling occasions are identified. The likelihood-based matching protocol performed well in simulation trials, demonstrating utility for use in a wide range of genetic mark-recapture studies. Moderately sized SNP (64+) and MSAT (10-15) panels produced accurate match calls for recaptures and accurate non-match calls for samples from closely related individuals in the face of low to moderate genotyping error. Furthermore, matching performance remained stable or increased as the number of genetic markers increased, genotyping error notwithstanding.

Keywords

References

  1. Am J Hum Genet. 1992 Feb;50(2):347-59 [PMID: 1734715]
  2. Nat Rev Genet. 2005 Nov;6(11):847-59 [PMID: 16304600]
  3. Mol Ecol. 2013 Jun;22(11):2841-7 [PMID: 23711105]
  4. Mol Ecol. 2003 Jul;12(7):2003-9 [PMID: 12803649]
  5. Mol Ecol. 2003 Jun;12(6):1375-87 [PMID: 12755868]
  6. Mol Ecol Resour. 2015 Jan;15(1):187-202 [PMID: 24842551]
  7. Mol Ecol Resour. 2016 Jan;16(1):163-75 [PMID: 26230747]
  8. Mol Ecol. 2003 Jun;12 (6):1649-61 [PMID: 12755892]
  9. Nat Rev Genet. 2006 Oct;7(10):771-80 [PMID: 16983373]
  10. Genetics. 2004 Apr;166(4):1963-79 [PMID: 15126412]
  11. Mol Ecol Resour. 2012 Jul;12(4):771-8 [PMID: 22463778]
  12. Nat Rev Genet. 2010 Oct;11(10):697-709 [PMID: 20847747]
  13. Nucleic Acids Res. 1996 Aug 15;24(16):3189-94 [PMID: 8774899]
  14. Theor Popul Biol. 2006 Nov;70(3):300-21 [PMID: 16388833]
  15. Trends Ecol Evol. 1999 Aug;14(8):323-327 [PMID: 10407432]

Word Cloud

Created with Highcharts 10.0.0geneticmark-recapturelikelihood-basedmatchstudiesgenotypingclusteringrecapturescallsaccuratesamplematchingerrorcallingrecaptureprobabilitiesgenotypessamplesperformanceerror-tolerantieSNPMSATmarkerssimulationsamplingidentifiedincreasedError-tolerantpresentspromisingtechniqueaccuratelyidentifyeventscombininglatentobservedmaycontainerrorsCombinedalgorithmsgroupsetsbaseduponpairwisetoolscanusedreconstructcapturehistoriesmodellingassessrecentlyintroducedmatch-callingmodelalgorithmassessedbiallelicsinglenucleotidepolymorphismsmultiallelicmicrosatelliteusingcombinationanalysescasestudydataPacificwalrusfishersnoveltwo-stageapproachdemonstratedapplicationsFirstrepeatcaptureswithinoccasionSubsequentlyacrossoccasionsprotocolperformedwelltrialsdemonstratingutilityusewiderangeModeratelysized64+10-15panelsproducednon-matchcloselyrelatedindividualsfacelowmoderateFurthermoreremainedstablenumbernotwithstandingAccurateidentificationcapture–recaptureinferencenon-invasive

Similar Articles

Cited By (1)