A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer.

Bogdan-Tiberius Preca, Karolina Bajdak, Kerstin Mock, Waltraut Lehmann, Vignesh Sundararajan, Peter Bronsert, Alexandra Matzge-Ogi, Véronique Orian-Rousseau, Simone Brabletz, Thomas Brabletz, Jochen Maurer, Marc P Stemmler
Author Information
  1. Bogdan-Tiberius Preca: Department of General and Visceral Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
  2. Karolina Bajdak: Department of General and Visceral Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
  3. Kerstin Mock: Department of General and Visceral Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
  4. Waltraut Lehmann: Department of General and Visceral Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
  5. Vignesh Sundararajan: Department of General and Visceral Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
  6. Peter Bronsert: German Cancer Consortium (DKTK), Heidelberg, Germany.
  7. Alexandra Matzge-Ogi: Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany.
  8. Véronique Orian-Rousseau: Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany.
  9. Simone Brabletz: Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
  10. Thomas Brabletz: Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
  11. Jochen Maurer: Department of General and Visceral Surgery, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.
  12. Marc P Stemmler: Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.

Abstract

Cancer metastasis is the main reason for poor patient survival. Tumor cells delaminate from the primary tumor by induction of epithelial-mesenchymal transition (EMT). EMT is mediated by key transcription factors, including ZEB1, activated by tumor cell interactions with stromal cells and the extracellular matrix (ECM). ZEB1-mediated EMT and motility is accompanied by substantial cell reprogramming and the acquisition of a stemness phenotype. However, understanding of the underlying mechanism is still incomplete. We identified hyaluronic acid (HA), one major ECM proteoglycan and enriched in mammary tumors, to support EMT and enhance ZEB1 expression in cooperation with CD44s. In breast cancer cell lines HA is synthesized mainly by HAS2, which was already shown to be implicated in cancer progression. ZEB1 and HAS2 expression strongly correlates in various cancer entities and high HAS2 levels associate with an early relapse. We identified HAS2, tumor cell-derived HA and ZEB1 to form a positive feedback loop as ZEB1, elevated by HA, directly activates HAS2 expression. In an in vitro differentiation model HA-conditioned medium of breast cancer cells is enhancing osteoclast formation, an indicator of tumor cell-induced osteolysis that facilitates formation of bone metastasis. In combination with the previously identified ZEB1/ESRP1/CD44s feedback loop, we found a novel autocrine mechanism how ZEB1 is accelerating EMT.

Keywords

References

  1. Nat Rev Cancer. 2013 Feb;13(2):97-110 [PMID: 23344542]
  2. Nat Rev Cancer. 2004 Jul;4(7):528-39 [PMID: 15229478]
  3. Clin Cancer Res. 2009 Dec 15;15(24):7462-7468 [PMID: 20008845]
  4. Biochim Biophys Acta. 2014 Aug;1840(8):2452-9 [PMID: 24513306]
  5. Nat Rev Cancer. 2007 Jun;7(6):415-28 [PMID: 17508028]
  6. J Biol Chem. 1997 May 30;272(22):13997-4000 [PMID: 9206724]
  7. Nat Cell Biol. 2014 Jun;16(6):488-94 [PMID: 24875735]
  8. Cancer Res. 1999 May 15;59(10):2499-504 [PMID: 10344764]
  9. Clin Cancer Res. 2013 Sep 15;19(18):4983-93 [PMID: 23918603]
  10. EMBO Rep. 2008 Jun;9(6):582-9 [PMID: 18483486]
  11. Nat Rev Cancer. 2009 Apr;9(4):265-73 [PMID: 19262571]
  12. Nat Rev Cancer. 2012 May 11;12 (6):425-36 [PMID: 22576165]
  13. Breast Cancer Res Treat. 2014 Jan;143(2):277-86 [PMID: 24337597]
  14. Cell. 2009 Nov 25;139(5):871-90 [PMID: 19945376]
  15. Int J Oncol. 2004 Nov;25(5):1375-82 [PMID: 15492828]
  16. Cell. 2012 Oct 26;151(3):690-690.e1 [PMID: 23101634]
  17. Histopathology. 2014 Sep;65(3):328-39 [PMID: 24527698]
  18. Cell Commun Signal. 2011 Jul 13;9:17 [PMID: 21752278]
  19. Nat Cell Biol. 2009 Dec;11(12 ):1487-95 [PMID: 19935649]
  20. Science. 2013 Nov 8;342(6159):1234850 [PMID: 24202173]
  21. Blood. 2005 Jun 15;105(12):4836-44 [PMID: 15731173]
  22. Cancer Cell. 2003 Jun;3(6):537-49 [PMID: 12842083]
  23. J Biol Chem. 2003 Nov 14;278(46):45801-10 [PMID: 12954618]
  24. J Biol Chem. 2012 Jun 15;287(25):21346-55 [PMID: 22547073]
  25. Genes Dev. 2008 Apr 1;22(7):894-907 [PMID: 18381893]
  26. Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13086-91 [PMID: 17666531]
  27. Nat Commun. 2016 Feb 15;7:10498 [PMID: 26876920]
  28. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  29. Semin Cancer Biol. 2008 Aug;18(4):251-9 [PMID: 18450475]
  30. J Biol Chem. 2004 Aug 6;279(32):33281-9 [PMID: 15190064]
  31. J Clin Invest. 2011 Mar;121(3):1064-74 [PMID: 21393860]
  32. Cell. 2008 May 16;133(4):704-15 [PMID: 18485877]
  33. Cancer Res. 2008 Jan 15;68(2):537-44 [PMID: 18199550]
  34. Carcinogenesis. 2013 Oct;34(10):2300-8 [PMID: 23740839]
  35. Cancer Lett. 2016 May 28;375(1):20-30 [PMID: 26921785]
  36. Cancer Cell. 2016 Jun 13;29(6):783-803 [PMID: 27300434]
  37. J Biochem. 2013 Nov;154(5):395-408 [PMID: 24092768]
  38. Cancer Lett. 2014 Jul 10;349(1):1-7 [PMID: 24727284]
  39. Oncotarget. 2015 Jun 10;6(16):14399-412 [PMID: 25973542]
  40. Lancet. 2005 Feb 19-25;365(9460):671-9 [PMID: 15721472]
  41. Int J Cancer. 2015 Dec 1;137(11):2566-77 [PMID: 26077342]
  42. Mol Cancer Res. 2013 Jun;11(6):638-50 [PMID: 23449933]
  43. Nat Cell Biol. 2008 May;10 (5):593-601 [PMID: 18376396]
  44. Cancer Res. 2012 Jan 15;72(2):537-47 [PMID: 22113945]
  45. Nature. 2012 Mar 28;483(7391):603-7 [PMID: 22460905]
  46. Breast Cancer Res. 2010;12(5):R68 [PMID: 20813035]
  47. Cancer Res. 2013 Jul 1;73(13):4112-22 [PMID: 23633482]
  48. J Biol Chem. 2014 Sep 19;289(38):26038-56 [PMID: 25077968]
  49. Cell. 2011 Nov 11;147(4):759-72 [PMID: 22078877]
  50. EMBO Mol Med. 2015 Apr 14;7(6):831-47 [PMID: 25872941]
  51. Cell. 2016 Feb 25;164(5):1015-30 [PMID: 26898331]
  52. Am J Pathol. 2007 Mar;170(3):1086-99 [PMID: 17322391]
  53. Int J Cancer. 2012 Jan 15;130(2):454-66 [PMID: 21387290]
  54. Nat Rev Cancer. 2011 Jun;11(6):411-25 [PMID: 21593787]
  55. Oncogene. 2013 Sep 12;32(37):4355-65 [PMID: 23108409]

MeSH Term

Blotting, Western
Breast Neoplasms
Cell Differentiation
Cell Line, Tumor
Chromatin Immunoprecipitation
Enzyme-Linked Immunosorbent Assay
Epithelial-Mesenchymal Transition
Feedback, Physiological
Female
Fluorescent Antibody Technique
Gene Expression Regulation, Neoplastic
Glucuronosyltransferase
Humans
Hyaluronan Synthases
Immunohistochemistry
Kaplan-Meier Estimate
Neoplasm Invasiveness
Osteoclasts
Polymerase Chain Reaction
Zinc Finger E-box-Binding Homeobox 1

Chemicals

ZEB1 protein, human
Zinc Finger E-box-Binding Homeobox 1
Glucuronosyltransferase
HAS2 protein, human
Hyaluronan Synthases

Word Cloud

Created with Highcharts 10.0.0EMTZEB1HAS2cancertumorHAmetastasiscellscellidentifiedexpressionbreastfeedbackloopepithelial-mesenchymaltransitionECMmechanismhyaluronicacidpositiveformationnovelCancermainreasonpoorpatientsurvivalTumordelaminateprimaryinductionmediatedkeytranscriptionfactorsincludingactivatedinteractionsstromalextracellularmatrixZEB1-mediatedmotilityaccompaniedsubstantialreprogrammingacquisitionstemnessphenotypeHoweverunderstandingunderlyingstillincompleteonemajorproteoglycanenrichedmammarytumorssupportenhancecooperationCD44slinessynthesizedmainlyalreadyshownimplicatedprogressionstronglycorrelatesvariousentitieshighlevelsassociateearlyrelapsecell-derivedformelevateddirectlyactivatesvitrodifferentiationmodelHA-conditionedmediumenhancingosteoclastindicatorcell-inducedosteolysisfacilitatesbonecombinationpreviouslyZEB1/ESRP1/CD44sfoundautocrineacceleratingZEB1/HAS2promotesCD44signalingsynthase2invasion

Similar Articles

Cited By