21st Century Cell Culture for 21st Century Toxicology.

David Pamies, Thomas Hartung
Author Information
  1. David Pamies: Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland 21205, United States.
  2. Thomas Hartung: Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland 21205, United States. ORCID

Abstract

There is no good science in bad models. Cell culture is especially prone to artifacts. A number of novel cell culture technologies have become more broadly available in the 21st century, which allow overcoming limitations of traditional culture and are more physiologically relevant. These include the use of stem-cell derived human cells, cocultures of different cell types, scaffolds and extracellular matrices, perfusion platforms (such as microfluidics), 3D culture, organ-on-chip technologies, tissue architecture, and organ functionality. The physiological relevance of such models is further enhanced by the measurement of biomarkers (e.g., key events of pathways), organ specific functionality, and more comprehensive assessment cell responses by high-content methods. These approaches are still rarely combined to create microphysiological systems. The complexity of the combination of these technologies can generate results closer to the in vivo situation but increases the number of parameters to control, bringing some new challenges. In fact, we do not argue that all cell culture needs to be that sophisticated. The efforts taken are determined by the purpose of our experiments and tests. If only a very specific molecular target to cell response is of interest, a very simple model, which reflects this, might be much more suited to allow standardization and high-throughput. However, the less defined the end point of interest and cellular response are, the better we should approximate organ- or tissue-like culture conditions to make physiological responses more probable. Besides these technologic advances, important progress in the quality assurance and reporting on cell cultures as well as the validation of cellular test systems brings the utility of cell cultures to a new level. The advancement and broader implementation of Good Cell Culture Practice (GCCP) is key here. In toxicology, this is a major prerequisite for meaningful and reliable results, ultimately supporting risk assessment and product development decisions.

References

  1. Biochem Pharmacol. 1992 Jan 22;43(2):191-6 [PMID: 1310848]
  2. Sci Rep. 2015 Oct 20;5:15377 [PMID: 26483214]
  3. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):4-6 [PMID: 25450741]
  4. Stem Cell Res Ther. 2013;4 Suppl 1:S4 [PMID: 24564953]
  5. Life Sci. 1995;57(21):1887-901 [PMID: 7475939]
  6. Biosens Bioelectron. 2016 Jan 15;75:67-81 [PMID: 26298640]
  7. ALTEX. 2015;32(3):171-81 [PMID: 26168280]
  8. Nat Rev Genet. 2012 Oct;13(10):732-44 [PMID: 22965355]
  9. Trends Neurosci. 2002 Mar;25(3):131-4 [PMID: 11852139]
  10. Sci Transl Med. 2012 Nov 7;4(159):159ra147 [PMID: 23136042]
  11. ALTEX. 2017;34(1):95-132 [PMID: 27554434]
  12. Nat Biotechnol. 2005 Jan;23(1):19-20 [PMID: 15637610]
  13. ALTEX. 2008;25(2):91-102 [PMID: 18551232]
  14. Biotechniques. 2015 Jan 01;58(1):13-23 [PMID: 25605576]
  15. Proc Am Thorac Soc. 2008 Sep 15;5(7):763-6 [PMID: 18757314]
  16. ALTEX. 2016;33(3):272-321 [PMID: 27180100]
  17. J Neurochem. 2011 Dec;119(5):957-71 [PMID: 21434924]
  18. Altern Lab Anim. 2010 May;38(2):167-82 [PMID: 20507187]
  19. ALTEX. 2013;30(3):275-91 [PMID: 23861075]
  20. Nature. 2009 Jul 9;460(7252):208-12 [PMID: 19587762]
  21. Stem Cells Dev. 2015 Jun 1;24(11):1284-96 [PMID: 25675366]
  22. Toxicol Sci. 2009 May;109(1):18-23 [PMID: 19357069]
  23. ALTEX. 2004;21(2):51-60 [PMID: 15195225]
  24. ALTEX. 2007;24(2):67-80 [PMID: 17844647]
  25. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):117-27 [PMID: 25450742]
  26. ALTEX. 2007;24(3):143-52 [PMID: 17926373]
  27. ALTEX. 2014;31(3):364-7 [PMID: 25061900]
  28. Altern Lab Anim. 2006 Feb;34(1):49-84 [PMID: 16522150]
  29. Sci Rep. 2016 Jul 26;6:28994 [PMID: 27456714]
  30. Biologicals. 2013 Nov;41(6):407-14 [PMID: 24071554]
  31. Biomed Mater. 2015 Jun 11;10(3):034006 [PMID: 26065674]
  32. ALTEX. 2014;31(1):53-61 [PMID: 24127042]
  33. ALTEX. 2012;29(4):359-72 [PMID: 23138507]
  34. ALTEX. 2008;25(2):103-14 [PMID: 18551234]
  35. Adv Drug Deliv Rev. 2014 Apr;69-70:vi [PMID: 24721291]
  36. Nature. 1989 Jun 8;339(6224):487-8 [PMID: 2725683]
  37. Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):842-55 [PMID: 26025038]
  38. Altern Lab Anim. 2012 Oct;40(5):235-57 [PMID: 23215661]
  39. Nature. 2016 May 25;533(7604):452-4 [PMID: 27225100]
  40. J Tissue Eng Regen Med. 2015 May;9(5):488-503 [PMID: 24493315]
  41. Stem Cell Rev. 2009 Dec;5(4):301-14 [PMID: 20016957]
  42. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):106-16 [PMID: 25450743]
  43. Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):E7-15 [PMID: 26668389]
  44. Nature. 2013 Sep 19;501(7467):373-9 [PMID: 23995685]
  45. ALTEX. 2004;21(2):61-6 [PMID: 15195226]
  46. Leuk Res. 2002 Apr;26(4):329-33 [PMID: 11839374]
  47. Toxicol In Vitro. 2015 Sep;29(6):1217-21 [PMID: 25450745]
  48. Altern Lab Anim. 2004 Nov;32(5):467-72 [PMID: 15656771]
  49. ALTEX. 2012;29(3):251-60 [PMID: 22847253]
  50. Trends Biotechnol. 2004 Apr;22(4):195-202 [PMID: 15038925]
  51. ALTEX. 2015;32(4):261-74 [PMID: 26536288]
  52. Biologicals. 2010 Mar;38(2):211-3 [PMID: 20362237]
  53. Altern Lab Anim. 2002 Jul-Aug;30(4):407-14 [PMID: 12234246]
  54. ALTEX. 2013;30(2):119-30 [PMID: 23665802]
  55. ALTEX. 2014;31(4):441-77 [PMID: 25027500]
  56. Xenobiotica. 2013 Jan;43(1):8-14 [PMID: 23030812]
  57. Methods Mol Biol. 2010;591:211-27 [PMID: 19957133]
  58. Cytotechnology. 2002 Jul;39(2):75-90 [PMID: 19003295]
  59. ALTEX. 2010;27(4):309-17 [PMID: 21240472]
  60. Trends Neurosci. 1997 Oct;20(10):471-7 [PMID: 9347615]
  61. ALTEX. 2009;26(1):3-16 [PMID: 19326029]
  62. Nat Methods. 2014 Apr 29;11(5):483-8 [PMID: 24781320]
  63. Biologicals. 2009 Jan;37(1):55-60 [PMID: 19081267]
  64. PLoS Biol. 2014 Jan;12(1):e1001756 [PMID: 24409096]
  65. FASEB J. 2015 Oct;29(10):4268-72 [PMID: 26116706]
  66. Biochem Pharmacol. 1991 Aug 8;42(5):1129-35 [PMID: 1872897]
  67. Lab Chip. 2012 Jun 21;12(12):2103-17 [PMID: 22534786]
  68. Mutat Res. 2005 Jul 4;584(1-2):1-256 [PMID: 15979392]
  69. Altern Lab Anim. 2005 Jun;33(3):261-87 [PMID: 16180980]
  70. Am J Stem Cells. 2013 Mar 08;2(1):39-51 [PMID: 23671815]
  71. PLoS Biol. 2010 Jun 29;8(6):e1000412 [PMID: 20613859]
  72. Nature. 2006 Jul 27;442(7101):368-73 [PMID: 16871203]

Grants

  1. R01 ES020750/NIEHS NIH HHS
  2. U18 TR000547/NCATS NIH HHS

MeSH Term

Cell Culture Techniques
Humans
Quality Control
Reproducibility of Results
Toxicology

Word Cloud

Created with Highcharts 10.0.0cellcultureCelltechnologies21stmodelsnumberalloworganfunctionalityphysiologicalkeyspecificassessmentresponsessystemsresultsnewresponseinterestcellularculturesCultureCenturygoodsciencebadespeciallyproneartifactsnovelbecomebroadlyavailablecenturyovercominglimitationstraditionalphysiologicallyrelevantincludeusestem-cellderivedhumancellscoculturesdifferenttypesscaffoldsextracellularmatricesperfusionplatformsmicrofluidics3Dorgan-on-chiptissuearchitecturerelevanceenhancedmeasurementbiomarkersegeventspathwayscomprehensivehigh-contentmethodsapproachesstillrarelycombinedcreatemicrophysiologicalcomplexitycombinationcangeneratecloservivosituationincreasesparameterscontrolbringingchallengesfactargueneedssophisticatedeffortstakendeterminedpurposeexperimentstestsmoleculartargetsimplemodelreflectsmightmuchsuitedstandardizationhigh-throughputHoweverlessdefinedendpointbetterapproximateorgan-tissue-likeconditionsmakeprobableBesidestechnologicadvancesimportantprogressqualityassurancereportingwellvalidationtestbringsutilityleveladvancementbroaderimplementationGoodPracticeGCCPtoxicologymajorprerequisitemeaningfulreliableultimatelysupportingriskproductdevelopmentdecisionsToxicology

Similar Articles

Cited By