A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models.

Christoph Zimmer, Reza Yaesoubi, Ted Cohen
Author Information
  1. Christoph Zimmer: Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America.
  2. Reza Yaesoubi: Health Policy and Management, Yale School of Public Health, New Haven, Connecticut, United States of America. ORCID
  3. Ted Cohen: Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America.

Abstract

Stochastic transmission dynamic models are especially useful for studying the early emergence of novel pathogens given the importance of chance events when the number of infectious individuals is small. However, methods for parameter estimation and prediction for these types of stochastic models remain limited. In this manuscript, we describe a calibration and prediction framework for stochastic compartmental transmission models of epidemics. The proposed method, Multiple Shooting for Stochastic systems (MSS), applies a linear noise approximation to describe the size of the fluctuations, and uses each new surveillance observation to update the belief about the true epidemic state. Using simulated outbreaks of a novel viral pathogen, we evaluate the accuracy of MSS for real-time parameter estimation and prediction during epidemics. We assume that weekly counts for the number of new diagnosed cases are available and serve as an imperfect proxy of incidence. We show that MSS produces accurate estimates of key epidemic parameters (i.e. mean duration of infectiousness, R0, and Reff) and can provide an accurate estimate of the unobserved number of infectious individuals during the course of an epidemic. MSS also allows for accurate prediction of the number and timing of future hospitalizations and the overall attack rate. We compare the performance of MSS to three state-of-the-art benchmark methods: 1) a likelihood approximation with an assumption of independent Poisson observations; 2) a particle filtering method; and 3) an ensemble Kalman filter method. We find that MSS significantly outperforms each of these three benchmark methods in the majority of epidemic scenarios tested. In summary, MSS is a promising method that may improve on current approaches for calibration and prediction using stochastic models of epidemics.

References

  1. Science. 2003 Jun 20;300(5627):1961-6 [PMID: 12766206]
  2. Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18438-43 [PMID: 17121996]
  3. BMC Bioinformatics. 2009 Oct 19;10:343 [PMID: 19840370]
  4. J Chem Phys. 2010 Jul 21;133(3):035101 [PMID: 20649359]
  5. J Theor Biol. 2005 Jun 7;234(3):413-21 [PMID: 15784275]
  6. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20425-30 [PMID: 23184969]
  7. Stat Med. 2008 Jul 20;27(16):2999-3016 [PMID: 18058829]
  8. BMC Med Inform Decis Mak. 2012 Dec 18;12:147 [PMID: 23249562]
  9. PLoS One. 2012;7(6):e38518 [PMID: 22723865]
  10. Math Biosci. 2015 Nov;269:117-29 [PMID: 26363082]
  11. Nat Commun. 2013;4:2837 [PMID: 24302074]
  12. Am J Epidemiol. 2006 Sep 15;164(6):591-7 [PMID: 16887892]
  13. PLoS One. 2010 Apr 14;5(4):e10036 [PMID: 20418945]
  14. Stat Med. 2004 Nov 30;23(22):3469-87 [PMID: 15505892]
  15. IET Syst Biol. 2015 Oct;9(5):181-92 [PMID: 26405142]
  16. PLoS Comput Biol. 2015 Jul 30;11(7):e1004383 [PMID: 26226185]
  17. Biosecur Bioterror. 2011 Jun;9(2):89-115 [PMID: 21612363]
  18. Bioinformatics. 2006 Dec 15;22(24):3067-74 [PMID: 17032683]
  19. Am J Epidemiol. 2004 Sep 15;160(6):509-16 [PMID: 15353409]
  20. Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15693-7 [PMID: 17030819]
  21. Biostatistics. 2012 Jan;13(1):153-65 [PMID: 21835814]
  22. PLoS Comput Biol. 2014 Apr 24;10(4):e1003583 [PMID: 24762780]
  23. J R Soc Interface. 2012 Mar 7;9(68):456-69 [PMID: 21831890]
  24. Emerg Infect Dis. 2006 Jan;12(1):110-3 [PMID: 16494726]
  25. Math Biosci. 2002 Nov-Dec;180:103-14 [PMID: 12387918]
  26. PLoS One. 2014 Apr 08;9(4):e94130 [PMID: 24714027]
  27. Eur J Oper Res. 2011 Dec 16;215(3):679-687 [PMID: 21966083]
  28. N Engl J Med. 2009 Dec 31;361(27):2619-27 [PMID: 20042753]
  29. J Am Stat Assoc. 2012;107(500):1410-1426 [PMID: 37583443]
  30. Hum Biol. 1952 Sep;24(3):201-33 [PMID: 12990130]
  31. Epidemiology. 2010 Nov;21(6):842-6 [PMID: 20805752]
  32. Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18238-43 [PMID: 22042838]
  33. PLoS One. 2008 May 14;3(5):e2185 [PMID: 18478118]
  34. Nature. 2004 Dec 16;432(7019):904-6 [PMID: 15602562]
  35. PLoS Med. 2013;10(3):e1001399 [PMID: 23472057]
  36. Am J Epidemiol. 2013 Nov 1;178(9):1505-12 [PMID: 24043437]
  37. BMC Syst Biol. 2012 Jul 17;6:86 [PMID: 22805626]

Grants

  1. K01 AI119603/NIAID NIH HHS
  2. R01 AI112438/NIAID NIH HHS
  3. U54 GM088558/NIGMS NIH HHS

MeSH Term

Animals
Calibration
Communicable Diseases, Emerging
Computer Simulation
Computer Systems
Data Interpretation, Statistical
Epidemics
Epidemiologic Methods
Humans
Likelihood Functions
Models, Statistical
Reproducibility of Results
Sensitivity and Specificity
Stochastic Processes

Word Cloud

Created with Highcharts 10.0.0MSSpredictionmodelsnumbermethodepidemicStochasticstochasticepidemicsaccuratetransmissionnovelinfectiousindividualsmethodsparameterestimationdescribecalibrationapproximationnewthreebenchmarkdynamicespeciallyusefulstudyingearlyemergencepathogensgivenimportancechanceeventssmallHowevertypesremainlimitedmanuscriptframeworkcompartmentalproposedMultipleShootingsystemsapplieslinearnoisesizefluctuationsusessurveillanceobservationupdatebelieftruestateUsingsimulatedoutbreaksviralpathogenevaluateaccuracyreal-timeassumeweeklycountsdiagnosedcasesavailableserveimperfectproxyincidenceshowproducesestimateskeyparametersiemeandurationinfectiousnessR0Reffcanprovideestimateunobservedcoursealsoallowstimingfuturehospitalizationsoverallattackratecompareperformancestate-of-the-artmethods:1likelihoodassumptionindependentPoissonobservations2particlefiltering3ensembleKalmanfilterfindsignificantlyoutperformsmajorityscenariostestedsummarypromisingmayimprovecurrentapproachesusingLikelihoodApproachReal-TimeCalibrationCompartmentalEpidemicModels

Similar Articles

Cited By