Sticking together: inter-species aggregation of bacteria isolated from iron snow is controlled by chemical signaling.

Jiro F Mori, Nico Ueberschaar, Shipeng Lu, Rebecca E Cooper, Georg Pohnert, Kirsten Küsel
Author Information
  1. Jiro F Mori: Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany. ORCID
  2. Nico Ueberschaar: Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany.
  3. Shipeng Lu: Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.
  4. Rebecca E Cooper: Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.
  5. Georg Pohnert: Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany.
  6. Kirsten Küsel: Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany.

Abstract

Marine and lake snow is a continuous shower of mixed organic and inorganic aggregates falling from the upper water where primary production is substantial. These pelagic aggregates provide a niche for microbes that can exploit these physical structures and resources for growth, thus are local hot spots for microbial activity. However, processes underlying their formation remain unknown. Here, we investigated the role of chemical signaling between two co-occurring bacteria that each make up more than 10% of the community in iron-rich lakes aggregates (iron snow). The filamentous iron-oxidizing Acidithrix strain showed increased rates of Fe(II) oxidation when incubated with cell-free supernatant of the heterotrophic iron-reducing Acidiphilium strain. Amendment of Acidithrix supernatant to motile cells of Acidiphilium triggered formation of cell aggregates displaying similar morphology to those of iron snow. Comparative metabolomics enabled the identification of the aggregation-inducing signal, 2-phenethylamine, which also induced faster growth of Acidiphilium. We propose a model that shows rapid iron snow formation, and ultimately energy transfer from the photic zone to deeper water layers, is controlled via a chemically mediated interplay.

References

  1. Webmedcentral. 2013 Sep 30;4(9):null [PMID: 24482732]
  2. Appl Environ Microbiol. 1999 Aug;65(8):3633-40 [PMID: 10427060]
  3. Crit Rev Food Sci Nutr. 2012;52(5):448-67 [PMID: 22369263]
  4. J Bacteriol. 2006 Nov;188(22):7830-9 [PMID: 16980463]
  5. Talanta. 1974 Apr;21(4):314-8 [PMID: 18961462]
  6. Curr Biol. 2012 Dec 18;22(24):2325-30 [PMID: 23142047]
  7. Proteomics. 2009 May;9(10):2695-710 [PMID: 19405032]
  8. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9 [PMID: 18440982]
  9. Res Microbiol. 2015 Feb-Mar;166(2):111-20 [PMID: 25638020]
  10. Nat Prod Rep. 2015 Jul;32(7):937-55 [PMID: 25926134]
  11. FEMS Microbiol Rev. 2003 Oct;27(4):505-23 [PMID: 14550943]
  12. Appl Environ Microbiol. 2013 Jul;79(14):4272-81 [PMID: 23645202]
  13. Appl Environ Microbiol. 2001 Nov;67(11):4975-83 [PMID: 11679315]
  14. FEMS Microbiol Ecol. 2015 Feb;91(2):1-13 [PMID: 25764555]
  15. Angew Chem Int Ed Engl. 2013 Jan 14;52(3):854-7 [PMID: 23315901]
  16. J Bacteriol. 1997 Sep;179(17):5574-81 [PMID: 9287015]
  17. Environ Microbiol. 2002 Jul;4(7):414-21 [PMID: 12123477]
  18. Int J Mol Sci. 2014 Jan 07;15(1):654-69 [PMID: 24402124]
  19. J Bacteriol. 2002 Oct;184(19):5251-60 [PMID: 12218010]
  20. Appl Environ Microbiol. 2002 Aug;68(8):4111-6 [PMID: 12147515]
  21. Microbiology. 2016 Jan;162(1):62-71 [PMID: 26506965]
  22. Sci Total Environ. 2005 Dec 15;353(1-3):3-9 [PMID: 16226792]
  23. Anal Chem. 2012 Jun 5;84(11):5035-9 [PMID: 22533540]
  24. Nat Rev Microbiol. 2006 Apr;4(4):249-58 [PMID: 16501584]
  25. Appl Environ Microbiol. 2003 Jun;69(6):3036-47 [PMID: 12788697]
  26. J Bacteriol. 2000 Jan;182(2):385-93 [PMID: 10629184]
  27. Arch Microbiol. 2011 Dec;193(12):857-66 [PMID: 21691775]
  28. Nucleic Acids Res. 2012 Jan;40(Database issue):D115-22 [PMID: 22194640]
  29. Anal Bioanal Chem. 2010 Jan;396(1):193-7 [PMID: 19813005]
  30. J Microbiol Methods. 2013 Nov;95(2):138-44 [PMID: 23954479]
  31. Microbiol Mol Biol Rev. 2015 Dec 23;80(1):91-138 [PMID: 26700108]

MeSH Term

Acidiphilium
Actinobacteria
Bacteria
Ferrous Compounds
Iron
Lakes
Microbial Interactions
Oxidation-Reduction
Phenethylamines
Signal Transduction

Chemicals

Ferrous Compounds
Phenethylamines
phenethylamine
Iron

Word Cloud

Created with Highcharts 10.0.0snowaggregatesironformationAcidiphiliumwatergrowthchemicalsignalingbacteriaAcidithrixstrainsupernatantcontrolledMarinelakecontinuousshowermixedorganicinorganicfallingupperprimaryproductionsubstantialpelagicprovidenichemicrobescanexploitphysicalstructuresresourcesthuslocalhotspotsmicrobialactivityHoweverprocessesunderlyingremainunknowninvestigatedroletwoco-occurringmake10%communityiron-richlakesfilamentousiron-oxidizingshowedincreasedratesFeIIoxidationincubatedcell-freeheterotrophiciron-reducingAmendmentmotilecellstriggeredcelldisplayingsimilarmorphologyComparativemetabolomicsenabledidentificationaggregation-inducingsignal2-phenethylaminealsoinducedfasterproposemodelshowsrapidultimatelyenergytransferphoticzonedeeperlayersviachemicallymediatedinterplayStickingtogether:inter-speciesaggregationisolated

Similar Articles

Cited By