Survival, DNA Integrity, and Ultrastructural Damage in Antarctic Cryptoendolithic Eukaryotic Microorganisms Exposed to Ionizing Radiation.

Claudia Pacelli, Laura Selbmann, Laura Zucconi, Marina Raguse, Ralf Moeller, Igor Shuryak, Silvano Onofri
Author Information
  1. Claudia Pacelli: 1 Department of Ecological and Biological Sciences, University of Tuscia , Viterbo, Italy .
  2. Laura Selbmann: 1 Department of Ecological and Biological Sciences, University of Tuscia , Viterbo, Italy .
  3. Laura Zucconi: 1 Department of Ecological and Biological Sciences, University of Tuscia , Viterbo, Italy .
  4. Marina Raguse: 2 Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR), Cologne, Germany .
  5. Ralf Moeller: 2 Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR), Cologne, Germany .
  6. Igor Shuryak: 3 Center for Radiological Research, Columbia University , New York, USA .
  7. Silvano Onofri: 1 Department of Ecological and Biological Sciences, University of Tuscia , Viterbo, Italy .

Abstract

Life dispersal between planets, planetary protection, and the search for biosignatures are main topics in astrobiology. Under the umbrella of the STARLIFE project, three Antarctic endolithic microorganisms, the melanized fungus Cryomyces antarcticus CCFEE 515, a hyaline strain of Umbilicaria sp. (CCFEE 6113, lichenized fungus), and a Stichococcus sp. strain (C45A, green alga), were exposed to high doses of space-relevant gamma radiation (Co), up to 117.07 kGy. After irradiation survival, DNA integrity and ultrastructural damage were tested. The first was assessed by clonogenic test; viability and dose responses were reasonably described by the linear-quadratic formalism. DNA integrity was evaluated by PCR, and ultrastructural damage was observed by transmission electron microscopy. The most resistant among the tested organisms was C. antarcticus both in terms of colony formation and DNA preservation. Besides, results clearly demonstrate that DNA was well detectable in all the tested organisms even when microorganisms were dead. This high resistance provides support for the use of DNA as a possible biosignature during the next exploration campaigns. Implication in planetary protection and contamination during long-term space travel are put forward. Key Words: Biosignatures-Ionizing radiation-DNA integrity-Eukaryotic microorganisms-Fingerprinting-Mars exploration. Astrobiology 17, 126-135.

References

  1. Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):797-800 [PMID: 11158548]
  2. Icarus. 1990 Mar;84(1):196-202 [PMID: 11538399]
  3. Icarus. 2000 Jun;145(2):391-427 [PMID: 11543506]
  4. Micron. 2002;33(2):199-210 [PMID: 11567888]
  5. Mutat Res. 2002 Nov 26;521(1-2):151-63 [PMID: 12438012]
  6. FEMS Microbiol Lett. 2004 Mar 19;232(2):203-9 [PMID: 15033240]
  7. Annu Rev Genet. 2004;38:645-79 [PMID: 15568989]
  8. Trends Ecol Evol. 2004 Mar;19(3):141-7 [PMID: 16701245]
  9. Phys Med Biol. 2006 Jun 7;51(11):2813-23 [PMID: 16723768]
  10. PLoS One. 2007 May 23;2(5):e457 [PMID: 17520016]
  11. Pigment Cell Melanoma Res. 2008 Apr;21(2):192-9 [PMID: 18426412]
  12. Semin Radiat Oncol. 2008 Oct;18(4):240-3 [PMID: 18725110]
  13. Microbiol Mol Biol Rev. 2010 Mar;74(1):121-56 [PMID: 20197502]
  14. Astrobiology. 2010 Apr;10(3):285-92 [PMID: 20446869]
  15. Fungal Biol. 2011 Oct;115(10):937-44 [PMID: 21944205]
  16. Astrobiology. 2012 May;12(5):508-16 [PMID: 22680696]
  17. Orig Life Evol Biosph. 2012 Jun;42(2-3):253-62 [PMID: 22688852]
  18. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  19. J Bacteriol. 1990 Aug;172(8):4238-46 [PMID: 2376561]
  20. Astrobiology. 2014 Jul;14(7):553-60 [PMID: 24977469]
  21. Life (Basel). 2014 Oct 13;4(4):535-65 [PMID: 25370528]
  22. Orig Life Evol Biosph. 2016 Jun;46(2-3):289-310 [PMID: 26530341]
  23. Astrobiology. 2015 Dec;15(12):1052-9 [PMID: 26684504]
  24. Radiat Res. 2016 Mar;185(3):246-56 [PMID: 26930380]
  25. Orig Life Evol Biosph. 2017 Jun;47(2):187-202 [PMID: 27033201]
  26. Astrobiology. 2017 Feb;17(2):101-109 [PMID: 28151691]
  27. Astrobiology. 2017 Feb;17(2):145-153 [PMID: 28206822]
  28. Nature. 1993 Apr 22;362(6422):709-15 [PMID: 8469282]
  29. Int J Radiat Biol. 1997 Oct;72(4):351-74 [PMID: 9343102]
  30. Radiat Res. 1998 Jul;150(1):83-91 [PMID: 9650605]

MeSH Term

Antarctic Regions
DNA
DNA Damage
Eukaryota
Fungi
Gamma Rays
Microbial Viability
Radiation, Ionizing

Chemicals

DNA

Word Cloud

Created with Highcharts 10.0.0DNAtestedplanetaryprotectionAntarcticmicroorganismsfungusantarcticusCCFEEstrainsphighintegrityultrastructuraldamageorganismsexplorationLifedispersalplanetssearchbiosignaturesmaintopicsastrobiologyumbrellaSTARLIFEprojectthreeendolithicmelanizedCryomyces515hyalineUmbilicaria6113lichenizedStichococcusC45Agreenalgaexposeddosesspace-relevantgammaradiationCo11707kGyirradiationsurvivalfirstassessedclonogenictestviabilitydoseresponsesreasonablydescribedlinear-quadraticformalismevaluatedPCRobservedtransmissionelectronmicroscopyresistantamongCtermscolonyformationpreservationBesidesresultsclearlydemonstratewelldetectableevendeadresistanceprovidessupportusepossiblebiosignaturenextcampaignsImplicationcontaminationlong-termspacetravelputforwardKeyWords:Biosignatures-Ionizingradiation-DNAintegrity-Eukaryoticmicroorganisms-Fingerprinting-MarsAstrobiology17126-135SurvivalIntegrityUltrastructuralDamageCryptoendolithicEukaryoticMicroorganismsExposedIonizingRadiation

Similar Articles

Cited By