Engineered Nanomaterials: Their Physicochemical Characteristics and How to Measure Them.

Rambabu Atluri, Keld Alstrup Jensen
Author Information
  1. Rambabu Atluri: National Research Centre for the Working Environment (NRCWE), Lerso Parkallé 105, 2100, Copenhagen, Denmark. rba@nrcwe.dk.
  2. Keld Alstrup Jensen: National Research Centre for the Working Environment (NRCWE), Lerso Parkallé 105, 2100, Copenhagen, Denmark.

Abstract

Numerous types of engineered nanomaterials (ENMs) are commercially available and developments move towards producing more advanced nanomaterials with tailored properties. Such advanced nanomaterials may include chemically doped or modified derivatives with specific surface chemistries; also called higher generation or multiconstituent nanomaterials. To fully enjoy the benefits of nanomaterials, appropriate characterisation of ENMs is necessary for many aspects of their production, use, testing and reporting to regulatory bodies. This chapter introduces both structural and textural properties of nanomaterials with a focus on demonstrating the information that can be achieved by analysis of primary physicochemical characteristics and how such information is critical to understand or assess the possible toxicity of engineered nanomaterials. Many of characterization methods are very specific to obtain particular characteristics and therefore the most widely used techniques are explained and demonstrated.

Keywords

References

  1. Appendix R7-1 recommendations for nanomaterials applicable to chapter R7a endpoint specific guidance (2012)
  2. Appendix R7-1 recommendations for nanomaterials applicable to chapter R7b endpoint specific guidance (2014a)
  3. Nanomaterials producers directory 2014–2015 (2014b) Future Markets Inc
  4. Atluri R, Bacsik Z, Hedin N, Garcia-Bennett AE (2010) Structural variations in mesoporous materials with cubic Pm(3)over-barn symmetry. Micropor Mesopor Mat 133(1–3):27–35 [DOI: 10.1016/j.micromeso.2010.04.007]
  5. Atluri R, Keld Alstrup J (2014) Classification and reporting of nanostructured silica materials. Manuscript
  6. Atluri R, Sakamoto Y, Garcia-Bennettt AE (2009) Co-structure directing agent induced phase transformation of mesoporous materials. Langmuir 25(5):3189–3195 [DOI: 10.1021/la803727u]
  7. Barber DJ, Freestone IC (1990) An investigation of the origin of the color of the lycurgus cup by analytical transmission electron-microscopy. Archaeometry 32:33–45 [DOI: 10.1111/j.1475-4754.1990.tb01079.x]
  8. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J Am Chem Soc 114(27):10834–10843 [DOI: 10.1021/ja00053a020]
  9. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319 [DOI: 10.1021/ja01269a023]
  10. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162 [DOI: 10.1103/RevModPhys.81.109]
  11. De Temmerman PJ, Verleysen E, Lammertyn J, Mast J (2014) Semi-automatic size measurement of primary particles in aggregated nanomaterials by transmission electron microscopy. Powder Technol 261:191–200 [DOI: 10.1016/j.powtec.2014.04.040]
  12. Delgado JL, Filippone S, Giacalone F, Herranz MA, Illescas B, Perez EM, Martin N (2014) Buckyballs. Top Curr Chem 350:1–64 [DOI: 10.1007/128_2012_414]
  13. Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5 [DOI: 10.1186/1743-8977-7-5]
  14. Eckert M (2012) Max von Laue and the discovery of X-ray diffraction in 1912. Ann Phys 524(5):A83–A85 [DOI: 10.1002/andp.201200724]
  15. Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydin AO, Hupp JT (2012) Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134(36):15016–15021 [DOI: 10.1021/ja3055639]
  16. Freestone I, Meeks N, Sax M, Higgitt C (2007) The lycurgus cup – a Roman nanotechnology. Gold Bulletin 40(4):270–277 [DOI: 10.1007/BF03215599]
  17. Gaffet E (2011) Nanomaterials: a review of the definitions, applications, health effects. How to implement secure development. C R Phys 12(7):648–658 [DOI: 10.1016/j.crhy.2011.06.002]
  18. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822 [DOI: 10.1021/cr500304f]
  19. Jackson P, Kling K, Jensen KA, Clausen PA, Madsen AM, Wallin H, Vogel U (2014) Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line. Environ Mol Mutagen 56(2):183–203
  20. Jana NR, Earhart C, Ying JY (2007) Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem Mater 19(21):5074–5082 [DOI: 10.1021/cm071368z]
  21. Janez P (2010) European Commission recommendation on the definition of the term “Nanomaterial”. O J E U 275 (L)(L):38–40
  22. Jensen KA, Pojana G, Bilanicora D (2014) Characterization of manufactured nanomaterials, dispersion and exposure characterization for toxicological testing. In: Monterio NA, Tran CL (eds) Nanotoxicology: progress towareds nanomedicine. Taylor & Francis, Boca Raton, pp 45–73 [DOI: 10.1201/b16562-6]
  23. Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4(2):207–246 [DOI: 10.3109/17435390903569639]
  24. Kim JH, Shim BS, Kim HS, Lee YJ, Min SK, Jang D, Abas Z, Kim J (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf-Green Tech 2(2):197–213 [DOI: 10.1007/s40684-015-0024-9]
  25. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466 [DOI: 10.1002/anie.201001273]
  26. Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides II 205:49–96 [DOI: 10.1007/12_097]
  27. Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B (2011) Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. BBA-Gen Subjects 1810(3):361–373 [DOI: 10.1016/j.bbagen.2010.04.007]
  28. Li D, Kaner RB (2006) Shape and aggregation control of nanoparticles: not shaken, not stirred. J Am Chem Soc 128(3):968–975 [DOI: 10.1021/ja056609n]
  29. Lin W, Huang Y w, Zhou XD, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217(3):252–259 [DOI: 10.1016/j.taap.2006.10.004]
  30. Liu Y, Zhao YL, Sun BY, Chen CY (2013) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46(3):702–713 [DOI: 10.1021/ar300028m]
  31. Murthy CR, Gao B, Tao AR, Arya G (2015) Automated quantitative image analysis of nanoparticle assembly. Nanoscale 7(21):9793–9805 [DOI: 10.1039/C5NR00809C]
  32. Peng XH, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102(3–4):186–196 [DOI: 10.1016/j.aquatox.2011.01.014]
  33. Poulsen SS, Saber AT, Williams A, Andersen O, Kobler C, Atluri R, Pozzebon ME, Mucelli SP, Simion M, Rickerby D, Mortensen A, Jackson P, Kyjovska ZO, Molhave K, Jacobsen NR, Jensen KA, Yauk CL, Wallin H, Halappanavar S, Vogel U (2015) MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 284(1):16–32 [DOI: 10.1016/j.taap.2014.12.011]
  34. Prymak O, Ristig S, Meyer-Zaika V, Rostek A, Ruiz L, Gonzalez-Calbet J, Vallet-Regi M, Epple M (2014) X-ray powder diffraction as a tool to investigate the ultrastructure of nanoparticles. Russ Phys J 56(10):1111–1115 [DOI: 10.1007/s11182-014-0149-2]
  35. Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74 [DOI: 10.1016/j.toxlet.2006.11.001]
  36. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592 [DOI: 10.1039/b502142c]
  37. Sager TM, Kommineni C, Castranova V (2008) Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Part Fibre Toxicol 5:17 [DOI: 10.1186/1743-8977-5-17]
  38. Sivakumar S, Diamente PR, van Veggel FC (2006) Silica-coated Ln(3+)-doped LaF3 nanoparticles as robust down- and upconverting biolabels. Chem Eur J 12(22):5878–5884 [DOI: 10.1002/chem.200600224]
  39. Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, Oostingh GJ (2011) Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol 8:36 [DOI: 10.1186/1743-8977-8-36]
  40. Tallury P, Payton K, Santra S (2008) Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine 3(4):579–592 [DOI: 10.2217/17435889.3.4.579]
  41. Truong NP, Whittaker MR, Mak CW, Davis TP (2015) The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 12(1):129–142 [DOI: 10.1517/17425247.2014.950564]
  42. Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230(1):90–104 [DOI: 10.1016/j.tox.2006.11.002]
  43. Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3(10):3273–3286 [DOI: 10.1021/nn900918w]
  44. Yang H, Zhuang Y, Hu H, Du X, Zhang C, Shi X, Wu H, Yang S (2010) Silica-coated manganese oxide nanoparticles as a platform for targeted magnetic resonance and fluorescence imaging of cancer cells. Adv Funct Mater 20(11):1733–1741 [DOI: 10.1002/adfm.200902445]
  45. Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127(14):4990–4991 [DOI: 10.1021/ja0428863]
  46. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350):548–552 [DOI: 10.1126/science.279.5350.548]
  47. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924 [DOI: 10.1002/adma.201001068]
  48. Zou H, Wu SS, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957 [DOI: 10.1021/cr068035q]
  49. Zuin S, Pojana G, Marcomini A (2007) Effect-oriented characterization of nanomaterials. Nanotoxicology: characterization, dosing, and health effects. Taylor & Francis, New York, pp 19–57
  50. Schneider T, Jensen KA (2009) Relevance of aerosol dynamics and dustiness for personal exposure to manufactured nanoparticles. J Nanopart Res 11 (7):1637–1650

MeSH Term

Chemical Phenomena
Humans
Nanostructures

Word Cloud

Created with Highcharts 10.0.0nanomaterialsengineeredENMsadvancedpropertiesspecificinformationcharacteristicsNumeroustypescommerciallyavailabledevelopmentsmovetowardsproducingtailoredmayincludechemicallydopedmodifiedderivativessurfacechemistriesalsocalledhighergenerationmulticonstituentfullyenjoybenefitsappropriatecharacterisationnecessarymanyaspectsproductionusetestingreportingregulatorybodieschapterintroducesstructuraltexturalfocusdemonstratingcanachievedanalysisprimaryphysicochemicalcriticalunderstandassesspossibletoxicityManycharacterizationmethodsobtainparticularthereforewidelyusedtechniquesexplaineddemonstratedEngineeredNanomaterials:PhysicochemicalCharacteristicsMeasureThemFunctionalizationMicroscopyNanomaterialsNanoparticlesNanostructuresPhysico-ChemicalCharacterizationPropertiesSpecificSurfaceAreaSpectroscopy

Similar Articles

Cited By