Transcriptomic analysis of Crassostrea sikamea × Crassostrea angulata hybrids in response to low salinity stress.

Lulu Yan, Jiaqi Su, Zhaoping Wang, Xiwu Yan, Ruihai Yu, Peizhen Ma, Yangchun Li, Junpeng Du
Author Information
  1. Lulu Yan: Fisheries College, Ocean University of China, Qingdao, Shandong, China.
  2. Jiaqi Su: The Key Lab of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.
  3. Zhaoping Wang: Fisheries College, Ocean University of China, Qingdao, Shandong, China.
  4. Xiwu Yan: Engineering Research Center of Shellfish Culture and Breeding of Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China.
  5. Ruihai Yu: Fisheries College, Ocean University of China, Qingdao, Shandong, China.
  6. Peizhen Ma: Fisheries College, Ocean University of China, Qingdao, Shandong, China.
  7. Yangchun Li: Fisheries College, Ocean University of China, Qingdao, Shandong, China.
  8. Junpeng Du: Fisheries College, Ocean University of China, Qingdao, Shandong, China.

Abstract

Hybrid oysters often show heterosis in growth rate, weight, survival and adaptability to extremes of salinity. Oysters have also been used as model organisms to study the evolution of host-defense system. To gain comprehensive knowledge about various physiological processes in hybrid oysters under low salinity stress, we performed transcriptomic analysis of gill tissue of Crassostrea sikamea ♀ × Crassostrea angulata♂ hybrid using the deep-sequencing platform Illumina HiSeq. We exploited the high-throughput technique to delineate differentially expressed genes (DEGs) in oysters maintained in hypotonic conditions. A total of 199,391 high quality unigenes, with average length of 644 bp, were generated. Of these 35 and 31 genes showed up- and down-regulation, respectively. Functional categorization and pathway analysis of these DEGs revealed enrichment for immune mechanism, apoptosis, energy metabolism and osmoregulation under low salinity stress. The expression patterns of 41 DEGs in hybrids and their parental species were further analyzed by quantitative real-time PCR (qRT-PCR). This study will serve as a platform for subsequent gene expression analysis regarding environmental stress. Our findings will also provide valuable information about gene expression to better understand the immune mechanism, apoptosis, energy metabolism and osmoregulation in hybrid oysters under low salinity stress.

References

  1. PLoS One. 2015 Aug 25;10(8):e0136506 [PMID: 26305564]
  2. Traffic. 2007 Jun;8(6):640-6 [PMID: 17488288]
  3. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70 [PMID: 20435677]
  4. Gene. 2007 May 1;392(1-2):34-46 [PMID: 17175120]
  5. Mar Biotechnol (NY). 2012 Apr;14(2):203-17 [PMID: 21845383]
  6. BMC Genomics. 2014 Jun 20;15:503 [PMID: 24950855]
  7. PLoS One. 2012;7(9):e46244 [PMID: 23029449]
  8. Mol Neurobiol. 2014 Apr;49(2):673-84 [PMID: 24014157]
  9. Infect Immun. 1996 Jul;64(7):2425-30 [PMID: 8698462]
  10. Biochim Biophys Acta. 2011 Apr;1810(4):439-45 [PMID: 21126558]
  11. Fish Shellfish Immunol. 2008 Jan;24(1):11-7 [PMID: 17980621]
  12. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  13. Immunity. 2007 Oct;27(4):549-59 [PMID: 17967410]
  14. Genome Biol. 2004;5(2):R7 [PMID: 14759257]
  15. J Lipid Res. 1980 Jul;21(5):617-24 [PMID: 6995545]
  16. Comp Biochem Physiol C Toxicol Pharmacol. 2009 May;149(4):456-60 [PMID: 19010448]
  17. Nat Rev Genet. 2013 Jul;14(7):471-82 [PMID: 23752794]
  18. PLoS One. 2011;6(8):e23142 [PMID: 21829707]
  19. PLoS One. 2015 Aug 10;10(8):e0134280 [PMID: 26258576]
  20. Bioinformatics. 2005 Oct 1;21(19):3787-93 [PMID: 15817693]
  21. Fish Shellfish Immunol. 2006 Apr;20(4):536-47 [PMID: 16182565]
  22. J Biol Chem. 2008 Nov 28;283(48):33080-6 [PMID: 18829460]
  23. Nat Immunol. 2003 May;4(5):410-5 [PMID: 12719730]
  24. J Invertebr Pathol. 2014 Sep;121:78-84 [PMID: 25016160]
  25. Immunol Rev. 2009 Jan;227(1):106-28 [PMID: 19120480]
  26. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  27. Curr Opin Cell Biol. 1995 Apr;7(2):215-23 [PMID: 7612274]
  28. Fish Shellfish Immunol. 2015 Feb;42(2):400-7 [PMID: 25463292]
  29. Dev Comp Immunol. 2006;30(4):367-79 [PMID: 16005965]
  30. Microbiol Rev. 1991 Jun;55(2):303-15 [PMID: 1886523]
  31. Annu Rev Genet. 1996;30:405-39 [PMID: 8982460]
  32. Biochemistry. 2004 Jun 22;43(24):7881-91 [PMID: 15196032]
  33. Fish Shellfish Immunol. 2015 Sep;46(1):107-19 [PMID: 25989624]
  34. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  35. J Proteome Res. 2015 Jan 2;14(1):304-17 [PMID: 25389644]
  36. Comp Biochem Physiol B Biochem Mol Biol. 2011 Aug;159(4):220-6 [PMID: 21575740]
  37. Annu Rev Pathol. 2009;4:365-98 [PMID: 18928408]
  38. PLoS Genet. 2013 Mar;9(3):e1003366 [PMID: 23555283]
  39. Gene. 2016 Mar 10;578(2):185-93 [PMID: 26691500]
  40. Cytokine. 2009 Dec;48(3):161-9 [PMID: 19740675]
  41. J Exp Biol. 2003 Apr;206(Pt 7):1107-15 [PMID: 12604570]
  42. Nature. 2012 Oct 4;490(7418):49-54 [PMID: 22992520]
  43. Mol Ecol. 2011 Feb;20(3):517-29 [PMID: 21199031]
  44. Environ Pollut. 2016 Jul;214:756-66 [PMID: 27149153]
  45. Eur J Biochem. 1989 Mar 15;180(2):457-65 [PMID: 2538333]
  46. Fish Shellfish Immunol. 2004 Sep;17(3):235-43 [PMID: 15276603]
  47. Mar Biotechnol (NY). 2014 Feb;16(1):17-33 [PMID: 23907648]
  48. Comp Biochem Physiol B Biochem Mol Biol. 2009 Dec;154(4):387-95 [PMID: 19699310]
  49. Arch Environ Contam Toxicol. 1979;8(5):553-62 [PMID: 539838]
  50. PLoS One. 2013;8(3):e58563 [PMID: 23554902]
  51. Curr Opin Immunol. 2008 Aug;20(4):377-82 [PMID: 18585455]
  52. Nat Rev Immunol. 2003 Apr;3(4):280-91 [PMID: 12669019]
  53. J Cell Biol. 2001 Feb 5;152(3):607-20 [PMID: 11157986]
  54. Fish Shellfish Immunol. 2013 Dec;35(6):1957-68 [PMID: 24436977]
  55. Curr Opin Immunol. 2002 Feb;14(1):136-45 [PMID: 11790544]
  56. Sci STKE. 2000 Aug 08;2000(44):pe1 [PMID: 11752601]
  57. Sci Total Environ. 2009 Jan 15;407(3):1055-64 [PMID: 18992921]
  58. Environ Toxicol Chem. 2002 Aug;21(8):1683-91 [PMID: 12152770]
  59. PLoS One. 2012;7(8):e43653 [PMID: 22952730]
  60. FEBS Lett. 1988 Jul 4;234(1):189-94 [PMID: 2839360]
  61. J Proteome Res. 2008 Jan;7(1):424-31 [PMID: 18072731]
  62. Genome Biol. 2010;11(2):R14 [PMID: 20132535]
  63. J Biochem Mol Biol. 2005 Mar 31;38(2):128-50 [PMID: 15826490]
  64. Vaccine. 2003 Jun 1;21 Suppl 2:S12-23 [PMID: 12763678]
  65. Nature. 2007 Mar 15;446(7133):279-83 [PMID: 17361174]
  66. J Cell Sci. 2001 May;114(Pt 10):1821-7 [PMID: 11329368]
  67. Biochem J. 2003 Apr 1;371(Pt 1):205-10 [PMID: 12513692]

MeSH Term

Animals
Apoptosis
Crassostrea
Hybridization, Genetic
Osmoregulation
Osmotic Pressure
Salinity
Transcriptome

Word Cloud

Created with Highcharts 10.0.0salinitystressoysterslowanalysisCrassostreahybridDEGsexpressionalsostudysikamea×platformgenesimmunemechanismapoptosisenergymetabolismosmoregulationhybridswillgeneHybridoftenshowheterosisgrowthrateweightsurvivaladaptabilityextremesOystersusedmodelorganismsevolutionhost-defensesystemgaincomprehensiveknowledgevariousphysiologicalprocessesperformedtranscriptomicgilltissueangulata♂usingdeep-sequencingIlluminaHiSeqexploitedhigh-throughputtechniquedelineatedifferentiallyexpressedmaintainedhypotonicconditionstotal199391highqualityunigenesaveragelength644bpgenerated3531showedup-down-regulationrespectivelyFunctionalcategorizationpathwayrevealedenrichmentpatterns41parentalspeciesanalyzedquantitativereal-timePCRqRT-PCRservesubsequentregardingenvironmentalfindingsprovidevaluableinformationbetterunderstandTranscriptomicangulataresponse

Similar Articles

Cited By