Exploring phylogenetic hypotheses via Gibbs sampling on evolutionary networks.

Yun Yu, Christopher Jermaine, Luay Nakhleh
Author Information
  1. Yun Yu: Department of Computer Science, Rice University, Houston, Texas, 77005, USA.
  2. Christopher Jermaine: Department of Computer Science, Rice University, Houston, Texas, 77005, USA.
  3. Luay Nakhleh: Department of Computer Science, Rice University, Houston, Texas, 77005, USA. nakhleh@rice.edu.

Abstract

BACKGROUND: Phylogenetic networks are leaf-labeled graphs used to model and display complex evolutionary relationships that do not fit a single tree. There are two classes of phylogenetic networks: Data-display networks and evolutionary networks. While data-display networks are very commonly used to explore data, they are not amenable to incorporating probabilistic models of gene and genome evolution. Evolutionary networks, on the other hand, can accommodate such probabilistic models, but they are not commonly used for exploration.
RESULTS: In this work, we show how to turn evolutionary networks into a tool for statistical exploration of phylogenetic hypotheses via a novel application of Gibbs sampling. We demonstrate the utility of our work on two recently available genomic data sets, one from a group of mosquitos and the other from a group of modern birds. We demonstrate that our method allows the use of evolutionary networks not only for explicit modeling of reticulate evolutionary histories, but also for exploring conflicting treelike hypotheses. We further demonstrate the performance of the method on simulated data sets, where the true evolutionary histories are known.
CONCLUSION: We introduce an approach to explore phylogenetic hypotheses over evolutionary phylogenetic networks using Gibbs sampling. The hypotheses could involve reticulate and non-reticulate evolutionary processes simultaneously as we illustrate on mosquito and modern bird genomic data sets.

References

  1. Bioinformatics. 2002 Feb;18(2):337-8 [PMID: 11847089]
  2. Int J Parasitol. 2005 Apr 30;35(5):567-82 [PMID: 15826648]
  3. BMC Bioinformatics. 2008 Jul 28;9:322 [PMID: 18662388]
  4. IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41 [PMID: 22499653]
  5. PLoS Genet. 2012;8(4):e1002660 [PMID: 22536161]
  6. Trends Genet. 2013 Aug;29(8):439-41 [PMID: 23764187]
  7. Syst Biol. 2014 Jan 1;63(1):66-82 [PMID: 23988674]
  8. Trends Ecol Evol. 2013 Dec;28(12):719-28 [PMID: 24094331]
  9. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  10. BMC Bioinformatics. 2013;14 Suppl 15:S6 [PMID: 24564257]
  11. Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16448-53 [PMID: 25368173]
  12. Science. 2015 Jan 2;347(6217):1258524 [PMID: 25431491]
  13. Science. 2014 Dec 12;346(6215):1320-31 [PMID: 25504713]
  14. Mol Phylogenet Evol. 2016 Jan;94(Pt A):1-33 [PMID: 26238460]
  15. BMC Genomics. 2015;16 Suppl 10:S10 [PMID: 26450642]
  16. Mol Phylogenet Evol. 2016 Jan;94(Pt A):447-62 [PMID: 26518740]
  17. Mol Ecol. 2016 Jun;25(11):2361-72 [PMID: 26808290]
  18. PLoS Genet. 2016 May 04;12(5):e1006006 [PMID: 27144273]
  19. Comput Appl Biosci. 1997 Jun;13(3):235-8 [PMID: 9183526]
  20. Bioinformatics. 1998;14(1):68-73 [PMID: 9520503]

MeSH Term

Algorithms
Animals
Biological Evolution
Birds
Culicidae
Databases, Genetic
Markov Chains
Monte Carlo Method
Phylogeny

Word Cloud

Created with Highcharts 10.0.0networksevolutionaryphylogenetichypothesesdatausedGibbssamplingdemonstratesetstwocommonlyexploreprobabilisticmodelsexplorationworkviagenomicgroupmodernmethodreticulatehistoriesBACKGROUND:Phylogeneticleaf-labeledgraphsmodeldisplaycomplexrelationshipsfitsingletreeclassesnetworks:Data-displaydata-displayamenableincorporatinggenegenomeevolutionEvolutionaryhandcanaccommodateRESULTS:showturntoolstatisticalnovelapplicationutilityrecentlyavailableonemosquitosbirdsallowsuseexplicitmodelingalsoexploringconflictingtreelikeperformancesimulatedtrueknownCONCLUSION:introduceapproachusinginvolvenon-reticulateprocessessimultaneouslyillustratemosquitobirdExploring

Similar Articles

Cited By (1)