Stimuli-responsive liposomes for drug delivery.

Y Lee, D H Thompson
Author Information
  1. Y Lee: Department of Chemistry, Purdue University, West Lafayette, IN, USA.
  2. D H Thompson: Department of Chemistry, Purdue University, West Lafayette, IN, USA.

Abstract

The ultimate goal of drug delivery is to increase the bioavailability and reduce the toxic side effects of the active pharmaceutical ingredient (API) by releasing them at a specific site of action. In the case of antitumor therapy, association of the therapeutic agent with a carrier system can minimize damage to healthy, nontarget tissues, while limit systemic release and promoting long circulation to enhance uptake at the cancerous site due to the enhanced permeation and retention effect (EPR). Stimuli-responsive systems have become a promising way to deliver and release payloads in a site-selective manner. Potential carrier systems have been derived from a wide variety of materials, including inorganic nanoparticles, lipids, and polymers that have been imbued with stimuli-sensitive properties to accomplish triggered release based on an environmental cue. The unique features in the tumor microenvironment can serve as an endogenous stimulus (pH, redox potential, or unique enzymatic activity) or the locus of an applied external stimulus (heat or light) to trigger the controlled release of API. In liposomal carrier systems triggered release is generally based on the principle of membrane destabilization from local defects within bilayer membranes to effect release of liposome-entrapped drugs. This review focuses on the literature appearing between November 2008-February 2016 that reports new developments in stimuli-sensitive liposomal drug delivery strategies using pH change, enzyme transformation, redox reactions, and photochemical mechanisms of activation. WIREs Nanomed Nanobiotechnol 2017, 9:e1450. doi: 10.1002/wnan.1450 For further resources related to this article, please visit the WIREs website.

References

  1. J Control Release. 2011 Sep 5;154(2):196-202 [PMID: 21621569]
  2. J Control Release. 2013 Nov 28;172(1):179-189 [PMID: 23978682]
  3. Biochim Biophys Acta. 2015 Dec;1848(12):3113-25 [PMID: 26386397]
  4. J Drug Target. 2015;23(9):789-99 [PMID: 25675844]
  5. Int J Nanomedicine. 2013;8:3817-31 [PMID: 24143087]
  6. Bioorg Med Chem Lett. 2011 Nov 1;21(21):6370-5 [PMID: 21955941]
  7. Langmuir. 2009 Nov 17;25(22):13114-9 [PMID: 19852472]
  8. Colloids Surf B Biointerfaces. 2010 Jan 1;75(1):1-18 [PMID: 19782542]
  9. Langmuir. 2013 Nov 19;29(46):13991-5 [PMID: 24160736]
  10. Int J Nanomedicine. 2015 Oct 01;10:6199-214 [PMID: 26491292]
  11. Polymer (Guildf). 2015 Dec 2;80:171-179 [PMID: 26622069]
  12. Biomaterials. 2015 Jul;57:1-11 [PMID: 25956192]
  13. Eur J Pharm Biopharm. 2015 Sep;95(Pt A):88-98 [PMID: 25936859]
  14. Angew Chem Int Ed Engl. 2009;48(10):1823-6 [PMID: 19173369]
  15. J Med Chem. 2010 May 13;53(9):3782-92 [PMID: 20405849]
  16. Nanoscale. 2015 Mar 7;7(9):4088-96 [PMID: 25660501]
  17. Bioconjug Chem. 2011 Apr 20;22(4):523-8 [PMID: 21405113]
  18. J Control Release. 2015 Feb 28;200:106-14 [PMID: 25553829]
  19. Langmuir. 2013 Feb 5;29(5):1490-7 [PMID: 23286452]
  20. Langmuir. 2010 Apr 20;26(8):5726-33 [PMID: 20000430]
  21. ACS Appl Mater Interfaces. 2015 Sep 23;7(37):20556-67 [PMID: 26322900]
  22. Eur J Pharm Sci. 2015 Oct 12;78:67-78 [PMID: 26159739]
  23. Mol Pharm. 2014 Jul 7;11(7):2390-9 [PMID: 24827725]
  24. Methods Enzymol. 2009;464:131-45 [PMID: 19903553]
  25. Angew Chem Int Ed Engl. 2015 Oct 19;54(43):12743-7 [PMID: 26189870]
  26. Mol Pharm. 2012 Nov 5;9(11):3266-76 [PMID: 23030381]
  27. Colloids Surf B Biointerfaces. 2015 Dec 1;136:553-61 [PMID: 26454545]
  28. Biochemistry. 1996 May 7;35(18):5616-23 [PMID: 8639519]
  29. Bioconjug Chem. 2009 Jul;20(7):1332-9 [PMID: 19601658]
  30. J Zhejiang Univ Sci B. 2012 Dec;13(12):981-9 [PMID: 23225853]
  31. Methods Enzymol. 2009;464:279-307 [PMID: 19903560]
  32. Pharm Res. 2014 Mar;31(3):554-65 [PMID: 24022681]
  33. Angew Chem Int Ed Engl. 2012 Aug 27;51(35):8806-10 [PMID: 22833461]
  34. Eur J Pharm Sci. 2012 Mar 12;45(4):408-20 [PMID: 21946258]
  35. Langmuir. 2014 Jun 3;30(21):6219-27 [PMID: 24826785]
  36. Nanoscale. 2016 Mar 7;8(9):5139-45 [PMID: 26876788]
  37. Biomacromolecules. 2015 Apr 13;16(4):1322-30 [PMID: 25759951]
  38. Biomaterials. 2013 Apr;34(11):2773-86 [PMID: 23352118]
  39. Int J Nanomedicine. 2012;7:2621-30 [PMID: 22679372]
  40. Int J Biol Macromol. 2009 Nov 1;45(4):421-6 [PMID: 19549540]
  41. J Control Release. 2015 Oct 28;216:132-9 [PMID: 26247553]
  42. Bioconjug Chem. 2012 Oct 17;23(10):2071-7 [PMID: 22988941]
  43. J RNAi Gene Silencing. 2014 Jan 28;10:490-9 [PMID: 24741375]
  44. Mol Pharm. 2016 Feb 1;13(2):420-7 [PMID: 26691879]
  45. Carbohydr Polym. 2015 May 20;122:26-38 [PMID: 25817639]
  46. J Pharm Sci. 2015 Mar;104(3):1160-73 [PMID: 25449709]
  47. Biomater Sci. 2016 Apr;4(4):627-38 [PMID: 26806172]
  48. Pharm Res. 2014 Nov;31(11):3038-50 [PMID: 24805279]
  49. Colloids Surf B Biointerfaces. 2014 Nov 1;123:446-51 [PMID: 25448716]
  50. Biomacromolecules. 2012 Oct 8;13(10):3064-75 [PMID: 22917061]
  51. Chem Commun (Camb). 2012 May 18;48(40):4869-71 [PMID: 22498879]
  52. Chem Commun (Camb). 2010 Oct 14;46(38):7202-4 [PMID: 20820547]
  53. Biochim Biophys Acta. 1998 Dec 9;1415(1):193-204 [PMID: 9858729]
  54. J Therm Anal Calorim. 2009 Oct 1;98(1):97-104 [PMID: 20160877]
  55. PLoS One. 2013 Sep 06;8(9):e74679 [PMID: 24040316]
  56. Eur J Pharm Biopharm. 2009 Mar;71(3):431-44 [PMID: 18977297]
  57. Biomaterials. 2013 Oct;34(30):7462-70 [PMID: 23810081]
  58. Bioconjug Chem. 2014 Mar 19;25(3):533-42 [PMID: 24533729]
  59. Eur J Pharm Biopharm. 2014 Nov;88(3):670-82 [PMID: 25157908]
  60. J Am Chem Soc. 2009 Sep 2;131(34):12193-200 [PMID: 19663381]
  61. J Control Release. 2014 Jan 10;173:140-7 [PMID: 24188958]
  62. Integr Biol (Camb). 2013 Jan;5(1):96-107 [PMID: 22869005]
  63. Eur J Pharm Sci. 2016 Aug 25;91:20-30 [PMID: 27240779]
  64. Chem Phys Lipids. 2009 Feb;157(2):94-103 [PMID: 19094974]
  65. Org Biomol Chem. 2015 Apr 14;13(14):4310-20 [PMID: 25762431]
  66. PLoS One. 2015 Mar 27;10(3):e0120982 [PMID: 25816348]
  67. J Control Release. 2012 Jun 10;160(2):264-73 [PMID: 22182771]
  68. Bioconjug Chem. 2015 Jan 21;26(1):110-9 [PMID: 25506713]
  69. Biomaterials. 2015 Feb;41:1-14 [PMID: 25522960]
  70. J Control Release. 2012 Jan 30;157(2):196-205 [PMID: 21982898]
  71. J Colloid Interface Sci. 2016 Jan 1;461:69-78 [PMID: 26397912]
  72. Biomaterials. 2014 Jul;35(20):5414-5424 [PMID: 24709521]
  73. Int J Nanomedicine. 2012;7:4917-26 [PMID: 23028220]
  74. Chem Commun (Camb). 2011 Oct 21;47(39):10978-80 [PMID: 21909548]
  75. J Drug Target. 2014 Oct 7;22(3):220-231 [PMID: 24286254]
  76. Macromol Rapid Commun. 2010 Oct 1;31(19):1685-90 [PMID: 21567581]
  77. Bioconjug Chem. 2013 Mar 20;24(3):343-62 [PMID: 23305338]
  78. Int J Mol Sci. 2013 Sep 09;14(9):18557-71 [PMID: 24022690]
  79. Colloids Surf B Biointerfaces. 2014 Nov 1;123:395-402 [PMID: 25438693]
  80. Nanoscale. 2014 Jan 21;6(2):916-23 [PMID: 24281647]
  81. J Control Release. 2014 Jan 28;174:88-97 [PMID: 24231406]
  82. Chem Pharm Bull (Tokyo). 2013;61(4):390-8 [PMID: 23385961]
  83. Int J Nanomedicine. 2014 Dec 19;10:125-45 [PMID: 25565809]
  84. Biomaterials. 2013 Apr;34(12):3020-30 [PMID: 23360783]
  85. Int J Pharm. 2015 Aug 1;491(1-2):49-57 [PMID: 26056930]
  86. Nano Lett. 2011 Nov 9;11(11):4958-63 [PMID: 21992226]
  87. J Colloid Interface Sci. 2012 Dec 1;387(1):56-64 [PMID: 22980739]
  88. Mol Membr Biol. 2010 Oct;27(7):364-81 [PMID: 20939770]
  89. Eur J Pharm Biopharm. 2015 Apr;91:66-74 [PMID: 25660909]
  90. Nano Lett. 2016 Jan 13;16(1):177-81 [PMID: 26654461]
  91. Org Biomol Chem. 2015 Aug 7;13(29):8067-70 [PMID: 26134592]
  92. Photodiagnosis Photodyn Ther. 2016 Mar;13:81-90 [PMID: 26751701]
  93. Adv Drug Deliv Rev. 2012 Jun 15;64(9):866-84 [PMID: 22349241]
  94. J Control Release. 2016 Jan 28;222:56-66 [PMID: 26682502]
  95. Adv Mater. 2012 Jul 17;24(27):3659-65 [PMID: 22678851]
  96. Bioconjug Chem. 1998 May-Jun;9(3):305-8 [PMID: 9576803]
  97. Soft Matter. 2016 Jan 28;12(4):1014-20 [PMID: 26616557]
  98. J Drug Deliv. 2013;2013:705265 [PMID: 23533772]
  99. J Control Release. 2001 Jan 29;70(1-2):1-20 [PMID: 11166403]
  100. Appl Biochem Biotechnol. 2012 Jun;167(4):743-57 [PMID: 22592778]
  101. Int J Nanomedicine. 2015 Oct 01;10:6185-97 [PMID: 26491291]
  102. Br J Cancer. 1993 Jul;68(1):103-11 [PMID: 8318399]
  103. J Am Chem Soc. 2015 May 13;137(18):6000-10 [PMID: 25869911]
  104. Bioconjug Chem. 2013 Mar 20;24(3):314-32 [PMID: 23305315]
  105. Eur J Pharm Sci. 2016 Mar 10;84:139-45 [PMID: 26796143]
  106. Nanomedicine. 2010 Dec;6(6):714-29 [PMID: 20542144]
  107. Small. 2015 Oct 7;11(37):4870-4 [PMID: 26183232]
  108. J Pharm Pharmacol. 2015 Sep;67(9):1215-31 [PMID: 25880614]
  109. Drug Deliv. 2011 Jul;18(5):377-84 [PMID: 21438724]
  110. J Control Release. 2012 Jun 10;160(2):117-34 [PMID: 22484195]
  111. Int J Biomater. 2012;2012:458712 [PMID: 22792110]
  112. Nanomedicine (Lond). 2010 Apr;5(3):485-505 [PMID: 20394539]
  113. Colloids Surf B Biointerfaces. 2014 Mar 1;115:323-30 [PMID: 24394948]
  114. Lasers Surg Med. 2015 Dec;47(10):807-16 [PMID: 26415084]
  115. Biochim Biophys Acta. 2014 Jan;1840(1):507-15 [PMID: 24135456]
  116. Biomaterials. 2015 Oct;67:214-24 [PMID: 26222284]
  117. Mol Pharm. 2012 Oct 1;9(10):2950-5 [PMID: 22953784]
  118. Nanomedicine. 2015 Aug;11(6):1345-54 [PMID: 25888277]
  119. ACS Nano. 2011 May 24;5(5):3961-9 [PMID: 21466214]
  120. Colloids Surf B Biointerfaces. 2015 Feb 1;126:569-74 [PMID: 25481686]
  121. J Am Chem Soc. 2013 Nov 27;135(47):17655-8 [PMID: 24000948]
  122. Int J Nanomedicine. 2015 Aug 14;10:5171-84 [PMID: 26316748]
  123. Photodiagnosis Photodyn Ther. 2014 Jun;11(2):193-203 [PMID: 24657627]
  124. Bioorg Med Chem. 2015 Dec 15;23(24):7578-84 [PMID: 26602828]
  125. Nanomedicine. 2016 Jan;12(1):223-34 [PMID: 26390832]
  126. Biomaterials. 2016 Jan;75:193-202 [PMID: 26513413]
  127. Langmuir. 2013 Jun 4;29(22):6615-23 [PMID: 23698020]
  128. Biomaterials. 2012 Oct;33(29):7291-9 [PMID: 22795540]
  129. Langmuir. 2013 Oct 1;29(39):12228-33 [PMID: 23987129]
  130. Biomaterials. 2012 Jun;33(17):4345-52 [PMID: 22429980]
  131. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15719-24 [PMID: 26644576]
  132. Adv Drug Deliv Rev. 2012 Aug;64(11):979-92 [PMID: 21996056]
  133. Nanoscale Res Lett. 2013 Feb 22;8(1):102 [PMID: 23432972]
  134. Methods Mol Biol. 2010;624:163-75 [PMID: 20217595]
  135. ACS Appl Mater Interfaces. 2014 Mar 12;6(5):3219-25 [PMID: 24511877]
  136. Int J Nanomedicine. 2011;6:807-13 [PMID: 21589648]
  137. Anal Chem. 2016 Feb 2;88(3):1506-10 [PMID: 26750765]
  138. ACS Nano. 2013 Jan 22;7(1):717-24 [PMID: 23214407]
  139. Biomaterials. 2014 Sep;35(28):8186-96 [PMID: 24969637]
  140. J Control Release. 2014 Jan 10;173:43-50 [PMID: 24511611]
  141. Pharmaceutics. 2015 Sep 14;7(3):320-33 [PMID: 26389942]
  142. Colloids Surf B Biointerfaces. 2015 May 1;129:175-82 [PMID: 25851582]
  143. Colloids Surf B Biointerfaces. 2013 Mar 1;103:75-83 [PMID: 23201722]
  144. Biochemistry. 2012 Oct 9;51(40):8014-26 [PMID: 22989153]
  145. J Biol Inorg Chem. 2014 Feb;19(2):207-14 [PMID: 24037221]
  146. Eur J Pharm Sci. 2011 Apr 18;42(5):462-9 [PMID: 21296148]
  147. J Colloid Interface Sci. 2013 Sep 15;406:247-55 [PMID: 23809875]
  148. Biomaterials. 2015 Sep;64:10-20 [PMID: 26106797]
  149. Lasers Surg Med. 2015 Jan;47(1):77-87 [PMID: 25559348]
  150. ACS Appl Mater Interfaces. 2015 Sep 30;7(38):21442-54 [PMID: 26371468]
  151. PLoS One. 2010 Oct 15;5(10):e13430 [PMID: 20976172]
  152. Biochim Biophys Acta. 2011 Jan;1808(1):117-26 [PMID: 20691151]
  153. J Mater Chem B. 2015 Mar 21;3(11):2318-2330 [PMID: 32262062]
  154. Colloids Surf B Biointerfaces. 2015 Dec 1;136:809-16 [PMID: 26539807]
  155. Biomaterials. 2015 Apr;48:84-96 [PMID: 25701034]
  156. Pharm Res. 2015 Jul;32(7):2428-38 [PMID: 25663325]
  157. J Control Release. 2015 Nov 10;217:138-50 [PMID: 26368312]
  158. Nanomedicine. 2013 Oct;9(7):1114-22 [PMID: 23485748]
  159. Theranostics. 2012;2(10):1020-36 [PMID: 23139729]
  160. Pharmaceutics. 2011 Jul 11;3(3):379-405 [PMID: 24310586]
  161. Annu Rev Anal Chem (Palo Alto Calif). 2012;5:391-411 [PMID: 22708903]
  162. J Mater Chem B. 2014 Dec 14;2(46):8201-8207 [PMID: 25544886]
  163. Eur J Med Chem. 2012 Jun;52:159-72 [PMID: 22480493]
  164. Chem Phys Lipids. 2011 Jan;164(1):16-23 [PMID: 20932963]
  165. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):91-6 [PMID: 9874777]
  166. Biomaterials. 2015 Jun;52:126-39 [PMID: 25818419]
  167. Mol Pharm. 2014 Mar 3;11(3):755-65 [PMID: 24467226]
  168. Biomaterials. 2014 Dec;35(36):9731-45 [PMID: 25189519]
  169. Nat Nanotechnol. 2016 Apr;11(4):378-87 [PMID: 26780659]
  170. J Liposome Res. 2016 Dec;26(4):276-87 [PMID: 26784587]
  171. Biomacromolecules. 2011 Aug 8;12(8):3023-30 [PMID: 21728314]
  172. Adv Drug Deliv Rev. 2001 Mar 23;47(1):113-31 [PMID: 11251249]

Grants

  1. P30 CA023168/NCI NIH HHS
  2. R01 GM087016/NIGMS NIH HHS

MeSH Term

Drug Carriers
Drug Liberation
Humans
Hydrogen-Ion Concentration
Liposomes
Nanoparticles
Neoplasms
Oxidation-Reduction
Photochemical Processes
Polymers
Tumor Microenvironment

Chemicals

Drug Carriers
Liposomes
Polymers

Word Cloud

Created with Highcharts 10.0.0releasedrugdeliverycarriersystemsAPIsitecaneffectStimuli-responsivestimuli-sensitivetriggeredbaseduniquestimuluspHredoxliposomalWIREsultimategoalincreasebioavailabilityreducetoxicsideeffectsactivepharmaceuticalingredientreleasingspecificactioncaseantitumortherapyassociationtherapeuticagentsystemminimizedamagehealthynontargettissueslimitsystemicpromotinglongcirculationenhanceuptakecancerousdueenhancedpermeationretentionEPRbecomepromisingwaydeliverpayloadssite-selectivemannerPotentialderivedwidevarietymaterialsincludinginorganicnanoparticleslipidspolymersimbuedpropertiesaccomplishenvironmentalcuefeaturestumormicroenvironmentserveendogenouspotentialenzymaticactivitylocusappliedexternalheatlighttriggercontrolledgenerallyprinciplemembranedestabilizationlocaldefectswithinbilayermembranesliposome-entrappeddrugsreviewfocusesliteratureappearingNovember2008-February2016reportsnewdevelopmentsstrategiesusingchangeenzymetransformationreactionsphotochemicalmechanismsactivationNanomedNanobiotechnol20179:e1450doi:101002/wnan1450resourcesrelatedarticlepleasevisitwebsiteliposomes

Similar Articles

Cited By