Development and evaluation of a risk score for type 2 diabetes mellitus among middle-aged Chinese rural population based on the RuralDiab Study.

Hao Zhou, Yuqian Li, Xiaotian Liu, Fei Xu, Linlin Li, Kaili Yang, Xinling Qian, Ruihua Liu, Ronghai Bie, Chongjian Wang
Author Information
  1. Hao Zhou: Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China.
  2. Yuqian Li: Department of Clinical Pharmacology, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, P.R. China.
  3. Xiaotian Liu: Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China.
  4. Fei Xu: Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China.
  5. Linlin Li: Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China.
  6. Kaili Yang: Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China.
  7. Xinling Qian: Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China.
  8. Ruihua Liu: Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China.
  9. Ronghai Bie: Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China.
  10. Chongjian Wang: Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China.

Abstract

The purpose of this study was to establish a simple and effective risk score for type 2 diabetes mellitus (T2DM) in middle-aged rural Chinese. Total of 5453 participants aged 30-59 years from the Rural Diabetes, Obesity and Lifestyle (RuralDiab) study were recruited for establishing the RuralDiab risk score by using logistic regression analysis. The RuralDiab risk score was validated in a prospective study from Henan Province of China, and compared with previous risk scores by using the receiver-operating characteristics cure. Ultimately, sex, age, family history of diabetes, physical activity, waist circumference, history of dyslipidemia, diastolic blood pressure, body mass index were included in the RuralDiab risk score (range from 0 to 36), and the optimal cutoff value was 17 with 67.9% sensitivity and 67.8% specificity. The area under the cures (AUC) of the RuralDiab risk score was 0.723(95%CI: 0.710-0.735) for T2DM in validation population, which was significant higher than the American Diabetes Association score (AUC: 0.636), the Inter99 score (AUC: 0.669), the Oman risk score (AUC: 0.675). The RuralDiab risk score was established and demonstrated an appropriate performance for predicting T2DM in middle-aged Chinese rural population. Further studies for validation should be implemented in different populations.

References

  1. Clin Epidemiol. 2012;4:213-24 [PMID: 22936857]
  2. Intern Med. 2012;51(14):1821-6 [PMID: 22821094]
  3. Diabetes Obes Metab. 2010 Oct;12 (10 ):838-44 [PMID: 20920035]
  4. PLoS One. 2013 Nov 04;8(11):e77919 [PMID: 24223743]
  5. Stat Med. 2008 Jan 30;27(2):157-72; discussion 207-12 [PMID: 17569110]
  6. Diabetes Care. 2001 Nov;24(11):1899-903 [PMID: 11679454]
  7. Lancet. 2012 Dec 15;380(9859):2197-223 [PMID: 23245608]
  8. Diabetes Care. 2011 Jan;34 Suppl 1:S11-61 [PMID: 21193625]
  9. JAMA. 2013 Sep 4;310(9):948-59 [PMID: 24002281]
  10. Lancet. 2012 Dec 15;380(9859):2095-128 [PMID: 23245604]
  11. Diabetes Care. 2013 Dec;36(12):3944-52 [PMID: 24144651]
  12. Zhonghua Nei Ke Za Zhi. 1981 Nov;20(11):678-83 [PMID: 7341098]
  13. Acta Paediatr. 2007 May;96(5):644-7 [PMID: 17376185]
  14. Diabetes Care. 2004 Mar;27(3):727-33 [PMID: 14988293]
  15. Diabetes Res Clin Pract. 2007 Jun;76(3):317-26 [PMID: 17069920]
  16. Eur J Epidemiol. 2015 Jul;30(7):529-42 [PMID: 26092138]
  17. Diabetes. 2012 Mar;61(3):745-52 [PMID: 22315312]
  18. Circulation. 1993 Nov;88(5 Pt 1):2460-70 [PMID: 8222141]
  19. Diabetes Care. 2006 Aug;29(8):1872-7 [PMID: 16873795]
  20. Arch Intern Med. 2007 May 28;167(10):1068-74 [PMID: 17533210]
  21. Diabetes Res Clin Pract. 2007 Sep;77(3):438-44 [PMID: 17306410]
  22. Diabetologia. 2012 Jul;55(7):1944-52 [PMID: 22526603]
  23. Diabetes Care. 2012 Aug;35(8):1743-5 [PMID: 22723343]
  24. Med Sci Sports Exerc. 2003 Aug;35(8):1381-95 [PMID: 12900694]
  25. Diabetes Care. 2009 Jan;32 Suppl 1:S62-7 [PMID: 19118289]
  26. Hypertens Res. 2015 Nov;38(11):783-9 [PMID: 26178151]

MeSH Term

Adult
Age Factors
Aged
Blood Glucose
Body Mass Index
China
Diabetes Mellitus, Type 2
Dyslipidemias
Exercise
Female
Humans
Logistic Models
Male
Middle Aged
Obesity
Prospective Studies
ROC Curve
Risk Factors
Rural Population
Sex Factors
Waist Circumference

Chemicals

Blood Glucose

Word Cloud

Created with Highcharts 10.0.0scoreriskRuralDiab0studydiabetesT2DMmiddle-agedruralChinesepopulationAUC:type2mellitusDiabetesusinghistory67validationpurposeestablishsimpleeffectiveTotal5453participantsaged30-59yearsRuralObesityLifestylerecruitedestablishinglogisticregressionanalysisvalidatedprospectiveHenanProvinceChinacomparedpreviousscoresreceiver-operatingcharacteristicscureUltimatelysexagefamilyphysicalactivitywaistcircumferencedyslipidemiadiastolicbloodpressurebodymassindexincludedrange36optimalcutoffvalue179%sensitivity8%specificityareacuresAUC72395%CI:710-0735significanthigherAmericanAssociation636Inter99669Oman675establisheddemonstratedappropriateperformancepredictingstudiesimplementeddifferentpopulationsDevelopmentevaluationamongbasedStudy

Similar Articles

Cited By (6)