Prospects of Incorporation of Non-canonical Amino Acids for the Chemical Diversification of Antimicrobial Peptides.

Tobias Baumann, Jessica H Nickling, Maike Bartholomae, Andrius Buivydas, Oscar P Kuipers, Nediljko Budisa
Author Information
  1. Tobias Baumann: Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology) Berlin, Germany.
  2. Jessica H Nickling: Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology) Berlin, Germany.
  3. Maike Bartholomae: Molecular Genetics Group, Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen (University of Groningen) Groningen, Netherlands.
  4. Andrius Buivydas: Molecular Genetics Group, Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen (University of Groningen) Groningen, Netherlands.
  5. Oscar P Kuipers: Molecular Genetics Group, Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen (University of Groningen) Groningen, Netherlands.
  6. Nediljko Budisa: Biocatalysis Group, Department of Chemistry, Technische Universität Berlin (Berlin Institute of Technology) Berlin, Germany.

Abstract

The incorporation of non-canonical amino acids (ncAA) is an elegant way for the chemical diversification of recombinantly produced antimicrobial peptides (AMPs). Residue- and site-specific installation methods in several bacterial production hosts hold great promise for the generation of new-to-nature AMPs, and can contribute to tackle the ongoing emergence of antibiotic resistance in pathogens. Especially from a pharmacological point of view, desirable improvements span pH and protease resistance, solubility, oral availability and circulation half-life. Although the primary focus of this report is on ribosomally synthesized and post-translationally modified peptides (RiPPs), we have included selected cases of peptides produced by solid phase peptide synthesis to comparatively show the potential and impact of ncAA introduction. Generally speaking, the introduction of ncAAs in recombinant AMPs delivers novel levels of chemical diversification. Cotranslationally incorporated, they can take part in AMP biogenesis either through direction interaction with elements of the post-translational modification (PTM) machinery or as untargeted sites with unique physicochemical properties and chemical handles for further modification. Together with genetic libraries, genome mining and processing by PTM machineries, ncAAs present not a mere addition to this process, but a highly diverse pool of building blocks to significantly broaden the chemical space of this valuable class of molecules. This perspective summarizes new developments of ncAA containing peptides. Challenges to be resolved in order to reach large-scale pharmaceutical production of these promising compounds and prospects for future developments are discussed.

Keywords

References

  1. Science. 2001 Apr 20;292(5516):498-500 [PMID: 11313494]
  2. J Mol Biol. 2003 Sep 5;332(1):59-72 [PMID: 12946347]
  3. Proc Natl Acad Sci U S A. 2004 May 18;101(20):7566-71 [PMID: 15138302]
  4. Biochemistry. 2005 Jun 21;44(24):8873-82 [PMID: 15952794]
  5. Science. 2006 Mar 10;311(5766):1464-7 [PMID: 16527981]
  6. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11268-73 [PMID: 17592110]
  7. Appl Environ Microbiol. 2007 Sep;73(18):5809-16 [PMID: 17660303]
  8. Cell Mol Life Sci. 2008 Feb;65(3):455-76 [PMID: 17965835]
  9. Mol Microbiol. 2008 Jul;69(1):218-30 [PMID: 18485077]
  10. Nat Chem Biol. 2010 Jan;6(1):9-18 [PMID: 20016494]
  11. J Am Chem Soc. 2010 Jan 20;132(2):462-3 [PMID: 20017553]
  12. J Pharmacol Toxicol Methods. 2010 Mar-Apr;61(2):210-8 [PMID: 20176117]
  13. J Am Chem Soc. 2011 Mar 2;133(8):2338-41 [PMID: 21114289]
  14. Biochemistry. 2011 Mar 22;50(11):1894-900 [PMID: 21280675]
  15. J Am Chem Soc. 2011 Sep 14;133(36):14216-9 [PMID: 21848315]
  16. Expert Opin Drug Discov. 2012 Aug;7(8):695-709 [PMID: 22680308]
  17. J Med Chem. 2012 Jul 26;55(14):6294-305 [PMID: 22720778]
  18. Nat Prod Rep. 2013 Jan;30(1):108-60 [PMID: 23165928]
  19. Biochemistry. 2013 Mar 12;52(10):1828-37 [PMID: 23379331]
  20. Curr Opin Biotechnol. 2013 Aug;24(4):591-8 [PMID: 23537814]
  21. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W448-53 [PMID: 23677608]
  22. Angew Chem Int Ed Engl. 2013 Jul 8;52(28):7098-124 [PMID: 23729217]
  23. Angew Chem Int Ed Engl. 2013 Sep 9;52(37):9664-7 [PMID: 23960012]
  24. PLoS One. 2013 Sep 09;8(9):e74890 [PMID: 24040355]
  25. Science. 2013 Oct 18;342(6156):357-60 [PMID: 24136966]
  26. Int J Med Microbiol. 2014 Jan;304(1):51-62 [PMID: 24210177]
  27. Molecules. 2014 Jan 15;19(1):1004-22 [PMID: 24434673]
  28. Chem Biol. 2014 Sep 18;21(9):1075-101 [PMID: 25237856]
  29. Nature. 2015 Jan 22;517(7535):509-12 [PMID: 25363770]
  30. AAPS J. 2015 Jan;17(1):134-43 [PMID: 25366889]
  31. Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16724-9 [PMID: 25385624]
  32. Chem Commun (Camb). 2015;51(2):409-12 [PMID: 25407838]
  33. Chembiochem. 2015 Feb 9;16(3):503-9 [PMID: 25504932]
  34. Appl Microbiol Biotechnol. 2015 Mar;99(5):2023-40 [PMID: 25586583]
  35. Macromol Biosci. 2015 May;15(5):719-27 [PMID: 25644632]
  36. Biotechnol Bioeng. 2015 Aug;112(8):1663-72 [PMID: 25753985]
  37. Nucleic Acids Res. 2015 Jul 1;43(W1):W237-43 [PMID: 25948579]
  38. Sci Rep. 2015 May 18;5:9699 [PMID: 25982672]
  39. Expert Opin Drug Discov. 2015;10(8):857-70 [PMID: 26004576]
  40. J Am Chem Soc. 2015 Jun 10;137(22):6975-8 [PMID: 26006047]
  41. Acc Chem Res. 2015 Jul 21;48(7):1909-19 [PMID: 26079760]
  42. Org Biomol Chem. 2015 Oct 7;13(37):9585-92 [PMID: 26256511]
  43. Crit Rev Food Sci Nutr. 2017 Sep 2;57(13):2857-2876 [PMID: 26464037]
  44. Front Microbiol. 2015 Nov 27;6:1363 [PMID: 26640466]
  45. Biochim Biophys Acta. 2016 May;1858(5):1012-23 [PMID: 26724205]
  46. Amino Acids. 2016 May;48(5):1309-18 [PMID: 26872656]
  47. Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3615-20 [PMID: 26976568]
  48. Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3521-6 [PMID: 26979951]
  49. Mol Biosyst. 2016 May 24;12(6):1746-9 [PMID: 27027374]
  50. Chem Biol Drug Des. 2016 Sep;88(3):404-10 [PMID: 27062533]
  51. J Am Chem Soc. 2016 Apr 27;138(16):5254-7 [PMID: 27074593]
  52. J Biotechnol. 2016 Oct 10;235:100-11 [PMID: 27107466]
  53. J Biol Chem. 2016 Jul 22;291(30):15796-805 [PMID: 27226603]
  54. Biopolymers. 2016 Sep;106(5):746-56 [PMID: 27258330]
  55. Microb Cell Fact. 2016 Jun 07;15:97 [PMID: 27267232]
  56. ACS Synth Biol. 2016 Oct 21;5(10):1146-1154 [PMID: 27294279]
  57. Curr Opin Chem Biol. 2016 Oct;34:44-52 [PMID: 27344230]
  58. Bioorg Med Chem. 2016 Sep 15;24(18):4056-4065 [PMID: 27387357]
  59. Comput Methods Programs Biomed. 2016 Oct;134:215-23 [PMID: 27480745]
  60. J Vis Exp. 2016 Aug 01;(114): [PMID: 27500416]
  61. Sci Rep. 2016 Aug 30;6:32377 [PMID: 27572480]
  62. J Med Chem. 2016 Dec 22;59(24):10807-10836 [PMID: 27589349]
  63. FEMS Microbiol Rev. 2017 Jan;41(1):5-18 [PMID: 27591436]
  64. Sci Rep. 2016 Sep 16;6:33447 [PMID: 27634138]
  65. Curr Opin Struct Biol. 2016 Oct;40:112-119 [PMID: 27662231]
  66. Biochem Pharmacol. 2017 Jun 1;133:117-138 [PMID: 27663838]
  67. Chem Sci. 2015 Jan 1;6(1):50-69 [PMID: 28553457]
  68. Eur J Biochem. 1995 Jun 1;230(2):788-96 [PMID: 7607253]
  69. FEMS Microbiol Rev. 1993 Sep;12(1-3):21-37 [PMID: 8398216]

Word Cloud

Created with Highcharts 10.0.0peptideschemicalncAAAMPsnon-canonicalaminoacidsdiversificationproducedproductioncanresistanceribosomallysynthesizedpost-translationallymodifiedpeptideintroductionncAAsmodificationPTMdevelopmentsincorporationelegantwayrecombinantlyantimicrobialResidue-site-specificinstallationmethodsseveralbacterialhostsholdgreatpromisegenerationnew-to-naturecontributetackleongoingemergenceantibioticpathogensEspeciallypharmacologicalpointviewdesirableimprovementsspanpHproteasesolubilityoralavailabilitycirculationhalf-lifeAlthoughprimaryfocusreportRiPPsincludedselectedcasessolidphasesynthesiscomparativelyshowpotentialimpactGenerallyspeakingrecombinantdeliversnovellevelsCotranslationallyincorporatedtakepartAMPbiogenesiseitherdirectioninteractionelementspost-translationalmachineryuntargetedsitesuniquephysicochemicalpropertieshandlesTogethergeneticlibrariesgenomeminingprocessingmachineriespresentmereadditionprocesshighlydiversepoolbuildingblockssignificantlybroadenspacevaluableclassmoleculesperspectivesummarizesnewcontainingChallengesresolvedorderreachlarge-scalepharmaceuticalpromisingcompoundsprospectsfuturediscussedProspectsIncorporationNon-canonicalAminoAcidsChemicalDiversificationAntimicrobialPeptidesaminoacyl-tRNA-synthetasesantibacteriallantibioticsnisinnon-naturalvariantsorthogonaltranslation

Similar Articles

Cited By