Regulation of Antimicrobial Peptides in Aag2 Cells.

Rudian Zhang, Yibin Zhu, Xiaojing Pang, Xiaoping Xiao, Renli Zhang, Gong Cheng
Author Information
  1. Rudian Zhang: Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijing, China; School of Life Science, Tsinghua UniversityBeijing, China.
  2. Yibin Zhu: Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijing, China; School of Life Science, Tsinghua UniversityBeijing, China.
  3. Xiaojing Pang: Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University Beijing, China.
  4. Xiaoping Xiao: Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University Beijing, China.
  5. Renli Zhang: SZCDC-SUSTech Joint Key Laboratory for Tropical Diseases, Shenzhen Center for Disease Control and Prevention Shenzhen, China.
  6. Gong Cheng: Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua UniversityBeijing, China; SZCDC-SUSTech Joint Key Laboratory for Tropical Diseases, Shenzhen Center for Disease Control and PreventionShenzhen, China.

Abstract

Antimicrobial peptides (AMPs) are an important group of immune effectors that play a role in combating microbial infections in invertebrates. Most of the current information on the regulation of insect AMPs in microbial infection have been gained from , and their regulation in other insects are still not completely understood. Here, we generated an AMP induction profile in response to infections with some Gram-negative, -positive bacteria, and fungi in embryonic Aag2 cells. Most of the AMP inductions caused by the gram-negative bacteria was controlled by the Immune deficiency (Imd) pathway; nonetheless, , an gene discovered only in mosquitoes, was combinatorially regulated by the Imd, Toll and JAK-STAT pathways in the Aag2 cells. promoter analyses including specific sequence motif deletions implicated these three pathways in activity, as shown by a luciferase assay. Moreover, the recognition between Rel1 (refer to Dif/Dorsal in ) and STAT and their regulatory sites at the promoter site was validated by a super-shift electrophoretic mobility shift assay (EMSA). Our study provides information that increases our understanding of the regulation of s in response to microbial infections in mosquitoes. And it is a new finding that the AMPs are mainly regulated Imd pathway only, which is quite different from the previous understanding obtained from Drosophila.

Keywords

References

  1. J Biomed Biotechnol. 2009;2009:315423 [PMID: 19888430]
  2. PLoS Pathog. 2008 Jul 04;4(7):e1000098 [PMID: 18604274]
  3. Dev Comp Immunol. 2014 Jan;42(1):25-35 [PMID: 23721820]
  4. Proc Natl Acad Sci U S A. 2010 May 4;107(18):8111-6 [PMID: 20385844]
  5. Cell. 2010 Sep 3;142(5):714-25 [PMID: 20797779]
  6. J Biol Chem. 2005 Apr 22;280(16):16499-507 [PMID: 15722339]
  7. PLoS Pathog. 2014 Feb 13;10(2):e1003931 [PMID: 24550728]
  8. Nature. 2004 Feb 12;427(6975):627-30 [PMID: 14961119]
  9. Insect Biochem Mol Biol. 1993 Jan;23(1):81-90 [PMID: 8485519]
  10. Insect Mol Biol. 1999 Aug;8(3):311-8 [PMID: 10469248]
  11. Science. 2010 Oct 1;330(6000):86-8 [PMID: 20929810]
  12. J Biol Chem. 2001 Mar 2;276(9):6675-88 [PMID: 11053426]
  13. J Biol Chem. 1993 Jul 15;268(20):14893-7 [PMID: 8325867]
  14. Genome Biol Evol. 2014 Dec 31;7(1):349-66 [PMID: 25552534]
  15. J Biol Chem. 1990 Dec 25;265(36):22493-8 [PMID: 2125051]
  16. Immunity. 2006 Jul;25(1):1-5 [PMID: 16892501]
  17. Trends Parasitol. 2016 Mar;32(3):177-86 [PMID: 26626596]
  18. Eur J Biochem. 1994 Apr 1;221(1):201-9 [PMID: 8168509]
  19. J Biol Chem. 2004 May 14;279(20):21121-7 [PMID: 14985331]
  20. PLoS Pathog. 2009 May;5(5):e1000423 [PMID: 19424427]
  21. Annu Rev Immunol. 2007;25:697-743 [PMID: 17201680]
  22. Insect Biochem Mol Biol. 1995 Apr;25(4):511-8 [PMID: 7742836]
  23. Eur J Biochem. 1995 Oct 15;233(2):694-700 [PMID: 7588819]
  24. Immunity. 2000 Nov;13(5):737-48 [PMID: 11114385]
  25. J Biol Chem. 1994 Dec 30;269(52):33159-63 [PMID: 7806546]
  26. Parasit Vectors. 2012 Jul 24;5:148 [PMID: 22827926]
  27. BMC Genomics. 2010 Sep 30;11:531 [PMID: 20920294]
  28. Nat Microbiol. 2016 Mar 14;1:16023 [PMID: 27572642]
  29. PLoS One. 2010 May 18;5(5):e10678 [PMID: 20502529]
  30. PLoS Pathog. 2014 Apr 10;10(4):e1004027 [PMID: 24722701]
  31. Science. 2007 Jun 22;316(5832):1738-43 [PMID: 17588928]
  32. Bioessays. 1997 Nov;19(11):1019-26 [PMID: 9394624]
  33. Science. 2007 Jun 22;316(5832):1718-23 [PMID: 17510324]
  34. Science. 2002 Oct 4;298(5591):159-65 [PMID: 12364793]
  35. Parasit Vectors. 2015 Dec 18;8:641 [PMID: 26684012]
  36. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14614-9 [PMID: 9405661]
  37. Nature. 2002 Apr 25;416(6883):841-4 [PMID: 11976681]
  38. J Biol Chem. 2004 Jan 30;279(5):3308-17 [PMID: 14607839]
  39. Am J Trop Med Hyg. 1968 Mar;17(2):219-23 [PMID: 4869110]
  40. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14715-20 [PMID: 20679214]
  41. Cell. 1996 Feb 9;84(3):421-30 [PMID: 8608596]
  42. Nat Immunol. 2003 May;4(5):478-84 [PMID: 12692550]
  43. Histochem Cell Biol. 2002 May;117(5):431-40 [PMID: 12029490]
  44. Nat Biotechnol. 2006 Dec;24(12):1551-7 [PMID: 17160061]
  45. Eur J Biochem. 1976 Jun 15;66(1):79-84 [PMID: 60233]
  46. Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17841-6 [PMID: 19805194]
  47. PLoS Pathog. 2015 Apr 27;11(4):e1004848 [PMID: 25915054]
  48. J Biol Chem. 2003 Dec 5;278(49):48928-34 [PMID: 14519762]
  49. Insect Biochem Mol Biol. 2001 Mar 1;31(3):263-78 [PMID: 11167096]

MeSH Term

Aedes
Animals
Anti-Infective Agents
Antimicrobial Cationic Peptides
Bacteria
Cell Line
Fungi
Gene Expression Regulation
Host-Pathogen Interactions
Signal Transduction

Chemicals

Anti-Infective Agents
Antimicrobial Cationic Peptides

Word Cloud

Created with Highcharts 10.0.0regulationAMPsmicrobialinfectionsAag2ImdAntimicrobialpeptidesinformationinsectAMPresponsebacteriacellspathwaymosquitoesregulatedpathwayspromoterassayunderstandingimmunityimportantgroupimmuneeffectorsplayrolecombatinginvertebratescurrentinfectiongainedinsectsstillcompletelyunderstoodgeneratedinductionprofileGram-negative-positivefungiembryonicinductionscausedgram-negativecontrolledImmunedeficiencynonethelessgenediscoveredcombinatoriallyTollJAK-STATanalysesincludingspecificsequencemotifdeletionsimplicatedthreeactivityshownluciferaseMoreoverrecognitionRel1referDif/DorsalSTATregulatorysitessitevalidatedsuper-shiftelectrophoreticmobilityshiftEMSAstudyprovidesincreasessnewfindingmainlyquitedifferentpreviousobtainedDrosophilaRegulationPeptidesCellsantimicrobialinnatemosquito

Similar Articles

Cited By