Fructose and Sucrose Intake Increase Exogenous  Carbohydrate Oxidation during Exercise.

Jorn Trommelen, Cas J Fuchs, Milou Beelen, Kaatje Lenaerts, Asker E Jeukendrup, Naomi M Cermak, Luc J C van Loon
Author Information
  1. Jorn Trommelen: NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands. jorn.trommelen@maastrichtuniversity.com.
  2. Cas J Fuchs: NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands. cas.fuchs@maastrichtuniversity.nl.
  3. Milou Beelen: NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands. milou.beelen@maastrichtuniversity.nl.
  4. Kaatje Lenaerts: NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands. kaatje.lenaerts@maastrichtuniversity.nl.
  5. Asker E Jeukendrup: School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK. asker@mysportscience.com.
  6. Naomi M Cermak: NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands. naomi.cermak1234@gmail.com.
  7. Luc J C van Loon: NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands. l.vanloon@maastrichtuniversity.com.

Abstract

Peak exogenous carbohydrate oxidation rates typically reach ~1 g∙min-1 during exercise when ample glucose or glucose polymers are ingested. Fructose co-ingestion has been shown to further increase exogenous carbohydrate oxidation rates. The purpose of this study was to assess the impact of Fructose co-ingestion provided either as a monosaccharide or as part of the disaccharide sucrose on exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. Ten trained male cyclists (VO2peak: 65 ± 2 mL∙kg-1∙min-1) cycled on four different occasions for 180 min at 50% Wmax during which they consumed a carbohydrate solution providing 1.8 g∙min-1 of glucose (GLU), 1.2 g∙min-1 glucose + 0.6 g∙min-1 Fructose (GLU + FRU), 0.6 g∙min-1 glucose + 1.2 g∙min-1 sucrose (GLU + SUC), or water (WAT). Peak exogenous carbohydrate oxidation rates did not differ between GLU + FRU and GLU + SUC (1.40 ± 0.06 vs. 1.29 ± 0.07 g∙min-1, respectively, p = 0.999), but were 46% ± 8% higher when compared to GLU (0.96 ± 0.06 g∙min-1: p < 0.05). In line, exogenous carbohydrate oxidation rates during the latter 120 min of exercise were 46% ± 8% higher in GLU + FRU or GLU + SUC compared with GLU (1.19 ± 0.12, 1.13 ± 0.21, and 0.82 ± 0.16 g∙min-1, respectively, p < 0.05). We conclude that Fructose co-ingestion (0.6 g∙min-1) with glucose (1.2 g∙min-1) provided either as a monosaccharide or as sucrose strongly increases exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists.

Keywords

References

  1. J Physiol. 1977 May;267(1):237-48 [PMID: 874842]
  2. Br J Nutr. 2005 Apr;93(4):485-92 [PMID: 15946410]
  3. Am J Physiol Regul Integr Comp Physiol. 2009 Sep;297(3):R716-22 [PMID: 19553500]
  4. Med Sci Sports Exerc. 2004 Sep;36(9):1551-8 [PMID: 15354037]
  5. Int J Sport Nutr Exerc Metab. 2012 Feb;22(1):64-71 [PMID: 22248502]
  6. Int J Sport Nutr Exerc Metab. 2013 Dec;23 (6):571-83 [PMID: 23630082]
  7. Metabolism. 2005 May;54(5):610-8 [PMID: 15877291]
  8. Int J Sports Med. 1982 Aug;3(3):153-8 [PMID: 7129724]
  9. Med Sci Sports Exerc. 1995 Dec;27(12):1607-15 [PMID: 8614315]
  10. Physiol Rev. 1997 Jan;77(1):257-302 [PMID: 9016304]
  11. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1129-34 [PMID: 9927705]
  12. PLoS One. 2011;6(7):e22366 [PMID: 21811592]
  13. Nutr Metab (Lond). 2013 Aug 13;10(1):54 [PMID: 23941499]
  14. J Comp Physiol B. 2015 Feb;185(2):173-83 [PMID: 25416426]
  15. Nutrients. 2014 Aug 05;6(8):3117-29 [PMID: 25100436]
  16. Med Sci Sports Exerc. 2005 Sep;37(9):1510-6 [PMID: 16177602]
  17. Digestion. 1983;26(2):53-60 [PMID: 6840405]
  18. Med Sci Sports Exerc. 2005 Mar;37(3):426-32 [PMID: 15741841]
  19. Endocrinology. 2012 Sep;153(9):4181-91 [PMID: 22822162]
  20. Med Sci Sports Exerc. 2008 Feb;40(2):275-81 [PMID: 18202575]
  21. Br Vet J. 1994 Sep-Oct;150(5):423-37 [PMID: 7953577]
  22. Med Sci Sports Exerc. 2014 Sep;46(9):1778-86 [PMID: 25134001]
  23. J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):628-34 [PMID: 6618956]
  24. Med Sci Sports Exerc. 2014 Nov;46(11):2039-46 [PMID: 24621960]
  25. Am J Physiol Endocrinol Metab. 2015 Dec 15;309(12):E1032-9 [PMID: 26487008]
  26. Am J Physiol. 1999 Apr;276(4 Pt 1):E672-83 [PMID: 10198303]
  27. J Appl Physiol (1985). 1987 Dec;63(6):2388-95 [PMID: 3325488]
  28. J Appl Physiol (1985). 2010 Jun;108(6):1520-9 [PMID: 20299609]
  29. Curr Opin Clin Nutr Metab Care. 2010 Jul;13(4):452-7 [PMID: 20574242]
  30. J Appl Physiol (1985). 1993 Dec;75(6):2774-80 [PMID: 8125902]
  31. J Appl Physiol (1985). 2004 Apr;96(4):1285-91 [PMID: 14657044]
  32. J Appl Physiol (1985). 1987 Nov;63(5):1725-32 [PMID: 3121572]
  33. Eur J Appl Physiol Occup Physiol. 1991;63(3-4):179-83 [PMID: 1761004]
  34. Am J Physiol Gastrointest Liver Physiol. 2012 Jul 15;303(2):G155-68 [PMID: 22517770]
  35. Appl Physiol Nutr Metab. 2014 Sep;39(9):998-1011 [PMID: 24951297]
  36. Am J Clin Nutr. 2010 Nov;92(5):1071-9 [PMID: 20826630]
  37. J Int Soc Sports Nutr. 2014 Mar 04;11(1):8 [PMID: 24589205]
  38. J Appl Physiol (1985). 1986 Jul;61(1):165-72 [PMID: 3525502]
  39. Appl Physiol Nutr Metab. 2012 Jun;37(3):425-36 [PMID: 22468766]
  40. J Appl Physiol (1985). 2004 Apr;96(4):1277-84 [PMID: 14657042]
  41. Sports Med. 2000 Jun;29(6):407-24 [PMID: 10870867]
  42. J Physiol Biochem. 2005 Dec;61(4):529-37 [PMID: 16669350]
  43. Sports Med. 2015 Nov;45(11):1561-76 [PMID: 26373645]

MeSH Term

Adult
Bicycling
Blood Glucose
Body Mass Index
Body Weight
Cross-Over Studies
Diet
Dietary Carbohydrates
Double-Blind Method
Exercise
Fructose
Glucose
Humans
Insulin
Lactic Acid
Male
Oxygen Consumption
Sucrose

Chemicals

Blood Glucose
Dietary Carbohydrates
Insulin
Fructose
Lactic Acid
Sucrose
Glucose

Word Cloud

Created with Highcharts 10.0.00g∙min-1±GLU1+carbohydrateexogenousoxidationratesglucoseexercise2co-ingestionfructosesucrosetrainedcyclists6FRUSUCpPeakprovidedeithermonosaccharideprolongedmin06respectively46%8%highercompared<05typicallyreach~1amplepolymersingestedFructoseshownincreasepurposestudyassessimpactpartdisaccharideTenmaleVO2peak:65mL∙kg-1∙min-1cycledfourdifferentoccasions18050%Wmaxconsumedsolutionproviding8waterWATdiffer40vs2907=99996g∙min-1:linelatter120191213218216concludestronglyincreasesFructose and Sucrose Intake Increase Exogenous Carbohydrate Oxidation during Exercisesubstrate utilization metabolism stable isotopes sugar

Similar Articles

Cited By (11)