Impact of vaccine herd-protection effects in cost-effectiveness analyses of childhood vaccinations. A quantitative comparative analysis.

Marisa Holubar, Maria Christina Stavroulakis, Yvonne Maldonado, John P A Ioannidis, Despina Contopoulos-Ioannidis
Author Information
  1. Marisa Holubar: Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America.
  2. Maria Christina Stavroulakis: Department of Pediatrics, Icahn School of Medicine at Mount Sinai/ Elmhurst Hospital Center, New York, New York, United States of America.
  3. Yvonne Maldonado: Department of Pediatrics, Division of Pediatric Infectious Diseases and Department of Health Research and Policy, Senior Associate Dean for Faculty Development and Diversity, Stanford University School of Medicine, Stanford, California, United States of America.
  4. John P A Ioannidis: Stanford Prevention Research Center, Department of Medicine and Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California, United States of America.
  5. Despina Contopoulos-Ioannidis: Department of Pediatrics, Division of Pediatric Infectious Diseases and Department of Health Research and Policy, Senior Associate Dean for Faculty Development and Diversity, Stanford University School of Medicine, Stanford, California, United States of America.

Abstract

BACKGROUND: Inclusion of vaccine herd-protection effects in cost-effectiveness analyses (CEAs) can impact the CEAs-conclusions. However, empirical epidemiologic data on the size of herd-protection effects from original studies are limited.
METHODS: We performed a quantitative comparative analysis of the impact of herd-protection effects in CEAs for four childhood vaccinations (pneumococcal, meningococcal, rotavirus and influenza). We considered CEAs reporting incremental-cost-effectiveness-ratios (ICERs) (per quality-adjusted-life-years [QALY] gained; per life-years [LY] gained or per disability-adjusted-life-years [DALY] avoided), both with and without herd protection, while keeping all other model parameters stable. We calculated the size of the ICER-differences without vs with-herd-protection and estimated how often inclusion of herd-protection led to crossing of the cost-effectiveness threshold (of an assumed societal-willingness-to-pay) of $50,000 for more-developed countries or X3GDP/capita (WHO-threshold) for less-developed countries.
RESULTS: We identified 35 CEA studies (20 pneumococcal, 4 meningococcal, 8 rotavirus and 3 influenza vaccines) with 99 ICER-analyses (55 per-QALY, 27 per-LY and 17 per-DALY). The median ICER-absolute differences per QALY, LY and DALY (without minus with herd-protection) were $15,620 (IQR: $877 to $48,376); $54,871 (IQR: $787 to $115,026) and $49 (IQR: $15 to $1,636) respectively. When the target-vaccination strategy was not cost-saving without herd-protection, inclusion of herd-protection always resulted in more favorable results. In CEAs that had ICERs above the cost-effectiveness threshold without herd-protection, inclusion of herd-protection led to crossing of that threshold in 45% of the cases. This impacted only CEAs for more developed countries, as all but one CEAs for less developed countries had ICERs below the WHO-cost-effectiveness threshold even without herd-protection. In several analyses, recommendation for the adoption of the target vaccination strategy depended on the inclusion of the herd protection effect.
CONCLUSIONS: Inclusion of herd-protection effects in CEAs had a substantial impact in the estimated ICERs and made target-vaccination strategies more attractive options in almost half of the cases where ICERs were above the societal-willingness to pay threshold without herd-protection. More empirical epidemiologic data are needed to determine the size of herd-protection effects across diverse settings and also the size of negative vaccine effects, e.g. from serotype substitution.

References

  1. Vaccine. 2013 May 28;31(23):2638-46 [PMID: 23566946]
  2. Lancet Infect Dis. 2015 May;15(5):535-43 [PMID: 25801458]
  3. J Infect Dis. 2011 Oct 1;204(7):980-6 [PMID: 21878425]
  4. Vaccine. 2009 Aug 6;27(36):4891-904 [PMID: 19520205]
  5. Vaccine. 2010 Mar 8;28(11):2356-9 [PMID: 19567247]
  6. BMC Public Health. 2011 Jun 10;11:462 [PMID: 21663620]
  7. Lancet Infect Dis. 2015 Mar;15(3):301-9 [PMID: 25656600]
  8. BMC Med. 2013 Apr 26;11:112 [PMID: 23622110]
  9. Pharmacoeconomics. 2011 Mar;29(3):199-211 [PMID: 21250759]
  10. Med Decis Making. 2009 Jan-Feb;29(1):33-50 [PMID: 18948433]
  11. Cost Eff Resour Alloc. 2013 Aug 30;11(1):21 [PMID: 24004943]
  12. Vaccine. 2011 Sep 2;29(38):6686-94 [PMID: 21745516]
  13. Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):3953-60 [PMID: 20160102]
  14. Pediatr Infect Dis J. 2014 Jan;33 Suppl 2:S161-71 [PMID: 24336058]
  15. Vaccine. 2005 Feb 25;23 (14 ):1739-45 [PMID: 15705480]
  16. Med Decis Making. 2006 Jan-Feb;26(1):38-47 [PMID: 16495199]
  17. Vaccine. 2013 Jan 30;31(6):927-42 [PMID: 23246550]
  18. Vaccine. 2012 May 9;30(22):3320-8 [PMID: 22386745]
  19. BMJ. 2003 Feb 15;326(7385):365-6 [PMID: 12586669]
  20. Vaccine. 2010 Jul 26;28(33):5485-90 [PMID: 20554066]
  21. Vaccine. 2004 Oct 22;22(31-32):4203-14 [PMID: 15474710]
  22. Health Care Manag Sci. 2004 Feb;7(1):43-9 [PMID: 14977093]
  23. Int J Technol Assess Health Care. 2004 Summer;20(3):280-8 [PMID: 15446757]
  24. Pharmacoeconomics. 2010;28(6):449-61 [PMID: 20465314]
  25. Lancet Infect Dis. 2011 Jun;11(6):482-7 [PMID: 21616458]
  26. N Engl J Med. 2011 Nov 10;365(19):1760-1 [PMID: 22010866]
  27. Clin Infect Dis. 2010 Jan 15;50(2):184-91 [PMID: 20001736]
  28. Expert Rev Pharmacoecon Outcomes Res. 2008 Apr;8(2):165-78 [PMID: 20528406]
  29. N Engl J Med. 2014 Aug 28;371(9):796-7 [PMID: 25162885]
  30. Vaccine. 2009 Oct 19;27(44):6121-8 [PMID: 19715781]
  31. Vaccine. 2006 Jul 17;24(29-30):5690-9 [PMID: 16735083]
  32. Vaccine. 2014 Jul 23;32(34):4349-55 [PMID: 24657717]
  33. BMC Infect Dis. 2013 Jan 30;13:54 [PMID: 23363553]
  34. Vaccine. 2011 Dec 6;29(52):9640-8 [PMID: 22027484]
  35. Vaccine. 2012 Nov 6;30(48):6766-76 [PMID: 23000223]
  36. BMC Infect Dis. 2012 Apr 24;12:101 [PMID: 22530841]
  37. Scand J Infect Dis. 2008;40(9):721-9 [PMID: 18712627]
  38. Pharmacoeconomics. 2013 Aug;31(8):693-702 [PMID: 23645539]
  39. Vaccine. 2013 Jan 30;31(6):979-86 [PMID: 23219433]
  40. PLoS One. 2013 May 31;8(5):e65036 [PMID: 23741448]
  41. Pharmacoeconomics. 2009;27(4):281-97 [PMID: 19485425]
  42. Vaccine. 2002 Jun 21;20(21-22):2840-4 [PMID: 12102036]
  43. Clin Infect Dis. 2011 Aug 1;53(3):245-53 [PMID: 21705316]
  44. Pediatr Infect Dis J. 2014 May;33(5):504-10 [PMID: 24670957]
  45. Pharmacoeconomics. 2014 Jan;32(1):29-45 [PMID: 24288207]
  46. Rev Panam Salud Publica. 2009 Dec;26(6):518-28 [PMID: 20107706]
  47. Vaccine. 2011 Oct 19;29(45):8077-85 [PMID: 21864617]
  48. Vaccine. 2012 Jun 13;30(28):4267-75 [PMID: 22521287]
  49. Vaccine. 2012 Apr 27;30 Suppl 1:A7-14 [PMID: 22520139]
  50. Value Health. 2011 Sep-Oct;14(6):800-11 [PMID: 21914499]
  51. Br J Psychiatry. 2003 Dec;183:498-506 [PMID: 14645020]
  52. J Health Econ. 1997 Feb;16(1):1-31 [PMID: 10167341]
  53. Vaccine. 2007 Feb 9;25(8):1355-67 [PMID: 17208339]
  54. JAMA. 2010 Mar 10;303(10):943-50 [PMID: 20215608]
  55. Vaccine. 2010 Mar 8;28(11):2302-10 [PMID: 20064478]
  56. Lancet Glob Health. 2014 Jul;2(7):e397-405 [PMID: 25103393]
  57. Health Econ. 2010 Apr;19(4):422-37 [PMID: 19382128]
  58. BMC Public Health. 2013 Oct 30;13:1025 [PMID: 24171921]
  59. BMC Med. 2011 Jul 08;9:84 [PMID: 21740545]
  60. Lancet Infect Dis. 2011 Oct;11(10):760-8 [PMID: 21621466]
  61. BMJ. 2006 Mar 25;332(7543):699-703 [PMID: 16495332]
  62. Pediatr Infect Dis J. 2006 Jun;25(6):494-501 [PMID: 16732146]
  63. Vaccine. 2010 Nov 10;28(48):7634-43 [PMID: 20883739]
  64. Pharmacoeconomics. 2016 Mar;34(3):227-44 [PMID: 26477039]
  65. Vaccine. 2011 Jul 12;29(31):4963-72 [PMID: 21621575]
  66. Vaccine. 2008 Feb 20;26(8):1118-27 [PMID: 18215445]
  67. Vaccine. 2005 Feb 18;23(13):1540-8 [PMID: 15694506]
  68. Expert Rev Pharmacoecon Outcomes Res. 2008 Aug;8(4):373-93 [PMID: 20528344]
  69. Ann Intern Med. 2011 Feb 1;154(3):174-80 [PMID: 21282697]
  70. Vaccine. 2007 May 4;25(18):3669-78 [PMID: 17360082]
  71. BMC Infect Dis. 2010 Sep 03;10:260 [PMID: 20815900]
  72. Vaccine. 2010 Mar 19;28(14):2624-35 [PMID: 20109593]
  73. N Engl J Med. 2014 Nov 13;371(20):1889-99 [PMID: 25386897]
  74. Clin Ther. 2008 Feb;30(2):341-57 [PMID: 18343273]
  75. BMJ. 2005 Jan 8;330(7482):65 [PMID: 15601681]

Grants

  1. T32 AI052073/NIAID NIH HHS

MeSH Term

Adolescent
Child
Child, Preschool
Costs and Cost Analysis
Female
Humans
Immunity, Herd
Infant
Male
Models, Economic
Vaccination
Vaccines

Chemicals

Vaccines

Word Cloud

Created with Highcharts 10.0.0herd-protectioneffectsCEAswithoutICERsthresholdcost-effectivenesssizeperinclusioncountriesvaccineanalysesimpactIQR:Inclusionempiricalepidemiologicdatastudiesquantitativecomparativeanalysischildhoodvaccinationspneumococcalmeningococcalrotavirusinfluenzagainedherdprotectionestimatedledcrossing$15target-vaccinationstrategycasesdevelopedBACKGROUND:canCEAs-conclusionsHoweveroriginallimitedMETHODS:performedfourconsideredreportingincremental-cost-effectiveness-ratiosquality-adjusted-life-years[QALY]life-years[LY]disability-adjusted-life-years[DALY]avoidedkeepingmodelparametersstablecalculatedICER-differencesvswith-herd-protectionoftenassumedsocietal-willingness-to-pay$50000more-developedX3GDP/capitaWHO-thresholdless-developedRESULTS:identified35CEA20483vaccines99ICER-analyses55per-QALY27per-LY17per-DALYmedianICER-absolutedifferencesQALYLYDALYminus620$877$48376$54871$787$115026$49$1636respectivelycost-savingalwaysresultedfavorableresults45%impactedonelessWHO-cost-effectivenessevenseveralrecommendationadoptiontargetvaccinationdependedeffectCONCLUSIONS:substantialmadestrategiesattractiveoptionsalmosthalfsocietal-willingnesspayneededdetermineacrossdiversesettingsalsonegativeegserotypesubstitutionImpact

Similar Articles

Cited By (7)