Symbiosis in eukaryotic evolution.

Purificación López-García, Laura Eme, David Moreira
Author Information
  1. Purificación López-García: Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France. Electronic address: puri.lopez@u-psud.fr.
  2. Laura Eme: Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada NS B3H 4R2.
  3. David Moreira: Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France.

Abstract

Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes.

Keywords

References

  1. Curr Opin Microbiol. 2016 Jun;31:44-9 [PMID: 26894379]
  2. Front Microbiol. 2014 Aug 22;5:422 [PMID: 25202301]
  3. Proc Natl Acad Sci U S A. 2008 May 13;105(19):7052-7 [PMID: 18467493]
  4. Proc Biol Sci. 2006 Aug 7;273(1596):1867-72 [PMID: 16822745]
  5. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):6954-9 [PMID: 10860956]
  6. BMC Evol Biol. 2004 Jan 28;4:2 [PMID: 15005799]
  7. Nature. 2001 Jul 26;412(6845):433-6 [PMID: 11473316]
  8. Environ Microbiol. 2007 Jun;9(6):1423-38 [PMID: 17504480]
  9. Science. 2004 Nov 19;306(5700):1344-50 [PMID: 15486256]
  10. Nature. 2015 May 14;521(7551):173-179 [PMID: 25945739]
  11. Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13080-5 [PMID: 16938841]
  12. Nat Rev Microbiol. 2016 Sep;14 (9):589-600 [PMID: 27452230]
  13. Front Microbiol. 2011 Mar 25;2:55 [PMID: 21833311]
  14. Science. 2001 Jul 20;293(5529):484-7 [PMID: 11463914]
  15. Genome Biol Evol. 2012;4(4):466-85 [PMID: 22355196]
  16. Nat Rev Microbiol. 2013 Nov;11(11):789-99 [PMID: 24056930]
  17. Trends Ecol Evol. 2015 Nov;30(11):697-708 [PMID: 26455774]
  18. Nat Rev Microbiol. 2014 Jun;12 (6):449-55 [PMID: 24814066]
  19. Front Microbiol. 2013 Oct 04;4:299 [PMID: 24109477]
  20. Curr Biol. 2009 Jan 27;19(2):R81-8 [PMID: 19174147]
  21. Nature. 1998 Mar 5;392(6671):37-41 [PMID: 9510246]
  22. Int Microbiol. 2013 Sep;16(3):133-43 [PMID: 24568029]
  23. Science. 2015 Oct 23;350(6259):434-8 [PMID: 26494757]
  24. Biosystems. 1978 Apr;10(1-2):3-18 [PMID: 418827]
  25. Bioessays. 2007 Jan;29(1):74-84 [PMID: 17187354]
  26. Nat Rev Microbiol. 2014 Sep;12 (9):635-45 [PMID: 25118885]
  27. Nature. 2015 Oct 22;526(7574):587-90 [PMID: 26490622]
  28. ISME J. 2014 May;8(5):991-8 [PMID: 24285361]
  29. ISME J. 2017 Feb;11(2):327-336 [PMID: 27801905]
  30. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6239-44 [PMID: 9600949]
  31. Nat Rev Microbiol. 2011 Nov 08;10(1):13-26 [PMID: 22064560]
  32. Nat Microbiol. 2016 Feb 15;1:16002 [PMID: 27572167]
  33. Biochem Soc Trans. 2013 Feb 1;41(1):451-7 [PMID: 23356327]
  34. Mol Biol Evol. 2016 Apr;33(4):863-9 [PMID: 26882983]
  35. Cold Spring Harb Perspect Biol. 2012 Sep 01;4(9):a011403 [PMID: 22952398]
  36. Curr Opin Microbiol. 2011 Jun;14(3):300-6 [PMID: 21546306]
  37. Annu Rev Microbiol. 2012;66:429-52 [PMID: 22803797]
  38. Arch Mikrobiol. 1967;59(1):20-31 [PMID: 5602458]
  39. Curr Biol. 2015 Mar 16;25(6):R227-30 [PMID: 25784040]
  40. Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5416-24 [PMID: 27573819]
  41. Trends Microbiol. 2002 Jan;10(1):31-8 [PMID: 11755083]
  42. Cold Spring Harb Perspect Biol. 2015 Jul 01;7(7):a018093 [PMID: 26134315]
  43. Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):1055-67 [PMID: 16754614]
  44. Nature. 2013 Apr 11;496(7444):215-8 [PMID: 23535597]
  45. J Eukaryot Microbiol. 1999 Jul-Aug;46(4):347-66 [PMID: 18092388]
  46. Philos Trans R Soc Lond B Biol Sci. 2015 Sep 26;370(1678):20140318 [PMID: 26323752]
  47. Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13624-9 [PMID: 21810989]
  48. Trends Microbiol. 2017 Feb;25(2):125-140 [PMID: 27919551]
  49. Nature. 2017 Jan 19;541(7637):353-358 [PMID: 28077874]
  50. J Mol Evol. 1998 Nov;47(5):517-30 [PMID: 9797402]
  51. PLoS Curr. 2016 Mar 15;8:null [PMID: 28515968]
  52. ISME J. 2011 Jun;5(6):1038-47 [PMID: 21209666]
  53. FEMS Microbiol Rev. 2000 Dec;24(5):591-9 [PMID: 11077152]
  54. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088-90 [PMID: 270744]
  55. Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15386-91 [PMID: 15494441]
  56. Nature. 2016 Jun 01;534(7606):254-8 [PMID: 27279223]
  57. Nat Microbiol. 2016 Dec 20;2:16214 [PMID: 27996008]
  58. Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2124-9 [PMID: 20133857]
  59. Nucleic Acids Res. 1977 Mar;4(3):663-71 [PMID: 866186]
  60. ISME J. 2011 Jan;5(1):61-70 [PMID: 20613790]
  61. Antonie Van Leeuwenhoek. 2013 Jul;104(1):71-82 [PMID: 23632917]
  62. Mol Biol Evol. 2004 Jun;21(6):1095-109 [PMID: 15014145]
  63. Trends Plant Sci. 2016 Mar;21(3):199-208 [PMID: 26850795]
  64. Curr Opin Genet Dev. 1991 Dec;1(4):457-63 [PMID: 1822277]
  65. Cold Spring Harb Perspect Biol. 2014 Jan 01;6(1):null [PMID: 24384569]
  66. Mol Biol Evol. 2016 Jun;33(6):1528-41 [PMID: 26893300]
  67. Microbiol Mol Biol Rev. 2012 Jun;76(2):444-95 [PMID: 22688819]
  68. Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):E4069-78 [PMID: 27357680]
  69. Nat Rev Microbiol. 2012 Jun 11;10 (7):507-15 [PMID: 22683881]
  70. Nat Rev Microbiol. 2008 Oct;6(10):725-40 [PMID: 18794911]
  71. Annu Rev Plant Biol. 2013;64:583-607 [PMID: 23451781]
  72. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3786-90 [PMID: 6587394]
  73. Trends Cell Biol. 2013 Jan;23(1):9-15 [PMID: 22999189]
  74. Cold Spring Harb Perspect Biol. 2014 Feb 01;6(2):null [PMID: 24492708]
  75. Nature. 2006 Mar 30;440(7084):623-30 [PMID: 16572163]
  76. Nature. 1998 Nov 12;396(6707):133-40 [PMID: 9823893]
  77. Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):1039-54 [PMID: 16754613]
  78. PLoS One. 2010 Dec 02;5(12):e15530 [PMID: 21151962]
  79. Nature. 2010 Feb 18;463(7283):934-8 [PMID: 20139963]
  80. Adv Exp Med Biol. 2007;607:1-19 [PMID: 17977455]
  81. Genome Biol. 2013 Nov 22;14(11):R127 [PMID: 24267588]
  82. Microbiol Rev. 1982 Mar;46(1):1-42 [PMID: 6178009]
  83. Nat Rev Microbiol. 2012 Sep;10(9):641-54 [PMID: 22842661]
  84. Proc Biol Sci. 2012 Dec 22;279(1749):4870-9 [PMID: 23097517]
  85. Mol Biol Evol. 2008 Aug;25(8):1619-30 [PMID: 18463089]
  86. ISME J. 2013 Jan;7(1):50-60 [PMID: 22832344]
  87. Mol Microbiol. 2007 Dec;66(6):1306-20 [PMID: 18045382]
  88. FEMS Microbiol Rev. 2016 May;40(3):373-97 [PMID: 26895713]
  89. Curr Opin Plant Biol. 2006 Aug;9(4):364-70 [PMID: 16713732]
  90. Ann N Y Acad Sci. 2008 Mar;1125:158-70 [PMID: 18096853]
  91. FEMS Microbiol Rev. 2013 May;37(3):384-406 [PMID: 23480449]
  92. Mol Biol Evol. 2016 Jul;33(7):1833-42 [PMID: 27034425]
  93. PLoS Biol. 2004 Dec;2(12):e380 [PMID: 15523559]
  94. Science. 2004 Apr 9;304(5668):253-7 [PMID: 15073369]
  95. Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15450-5 [PMID: 26621749]
  96. BMC Evol Biol. 2009 Jul 09;9:158 [PMID: 19586555]
  97. Nat Rev Genet. 2007 May;8(5):395-403 [PMID: 17429433]
  98. Nat Rev Microbiol. 2015 Jul;13(7):447-56 [PMID: 26075362]
  99. Proc Natl Acad Sci U S A. 2014 May 20;111(20):E2149-56 [PMID: 24778240]
  100. Science. 2012 Feb 3;335(6068):587-90 [PMID: 22301318]
  101. Trends Microbiol. 2011 Dec;19(12):580-7 [PMID: 22018741]
  102. Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2093-6 [PMID: 25561531]
  103. Curr Biol. 2005 Jul 26;15(14):1325-30 [PMID: 16051178]
  104. PLoS Biol. 2015 Dec 04;13(12):e1002311 [PMID: 26636661]
  105. Nature. 2008 Mar 27;452(7186):456-9 [PMID: 18368114]
  106. New Sci. 1991 Mar 23;1761:46-50 [PMID: 11538109]
  107. Environ Microbiol. 2008 Mar;10(3):727-37 [PMID: 18237306]
  108. Sci Total Environ. 1986;56:379-97 [PMID: 11542059]
  109. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1071-6 [PMID: 8577716]
  110. Bioessays. 2006 May;28(5):525-33 [PMID: 16615090]
  111. Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13390-5 [PMID: 26438870]
  112. Science. 1997 May 2;276(5313):734-40 [PMID: 9115194]
  113. Nat Rev Microbiol. 2010 Oct;8(10 ):743-52 [PMID: 20844558]
  114. Cold Spring Harb Perspect Biol. 2014 Aug 01;6(8):null [PMID: 25085908]
  115. Science. 2005 May 20;308(5725):1114; author reply 1114 [PMID: 15905382]
  116. Curr Opin Genet Dev. 1998 Dec;8(6):624-9 [PMID: 9914207]
  117. Trends Genet. 2004 May;20(5):242-7 [PMID: 15109778]
  118. Annu Rev Genet. 2013;47:247-73 [PMID: 24016192]
  119. Nature. 2006 Oct 26;443(7114):950-5 [PMID: 16980956]
  120. Nature. 2000 Jan 6;403(6765):77-80 [PMID: 10638755]
  121. Nature. 2013 Dec 12;504(7479):231-6 [PMID: 24336283]
  122. Nat Rev Microbiol. 2008 Oct;6(10):741-51 [PMID: 18794912]
  123. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3846-51 [PMID: 16505362]
  124. Nucleic Acids Res. 2007;35(22):7591-603 [PMID: 17965091]
  125. Trends Plant Sci. 2015 Mar;20(3):186-94 [PMID: 25543258]
  126. Nature. 2014 Feb 20;506(7488):307-15 [PMID: 24553238]
  127. Photosynth Res. 1992;33:75-89 [PMID: 11538389]
  128. Trends Microbiol. 2016 Jul;24(7):525-34 [PMID: 27040918]
  129. Annu Rev Microbiol. 2014;68:195-215 [PMID: 24995872]
  130. J Eukaryot Microbiol. 2005 Sep-Oct;52(5):399-451 [PMID: 16248873]
  131. Biosystems. 1992;27(1):39-51 [PMID: 1391690]
  132. ISME J. 2011 Feb;5(2):231-43 [PMID: 20686514]
  133. ISME J. 2013 Mar;7(3):622-34 [PMID: 23151644]
  134. Nature. 1989 May 11;339(6220):l00-1 [PMID: 2497352]
  135. Nat Rev Genet. 2004 Feb;5(2):123-35 [PMID: 14735123]
  136. J Theor Biol. 1967 Mar;14(3):255-74 [PMID: 11541392]
  137. Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):769-74 [PMID: 20080750]
  138. Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):E2846-55 [PMID: 23027979]
  139. Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):699-712 [PMID: 20124339]
  140. Mol Ecol. 2015 Dec;24(24):6007-12 [PMID: 26769402]
  141. Ann N Y Acad Sci. 2008 Mar;1125:58-72 [PMID: 18378587]
  142. Genome Biol Evol. 2014 Mar;6(3):474-81 [PMID: 24532674]
  143. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10270-7 [PMID: 25883268]
  144. Curr Biol. 2016 May 23;26(10):1274-84 [PMID: 27185558]
  145. Bioessays. 2003 Nov;25(11):1129-38 [PMID: 14579253]
  146. Proc Biol Sci. 2000 Jun 22;267(1449):1213-21 [PMID: 10902687]
  147. Science. 1978 Jan 27;199(4327):395-403 [PMID: 202030]
  148. Annu Rev Microbiol. 1975;29:467-83 [PMID: 1180522]
  149. BMC Biol. 2015 Oct 05;13:84 [PMID: 26437773]
  150. Cold Spring Harb Perspect Biol. 2014 Sep 02;6(9):a016006 [PMID: 25183828]
  151. Bioessays. 2016 Jan;38(1):100-8 [PMID: 26568407]
  152. Nature. 2016 Mar 3;531(7592):101-4 [PMID: 26840490]
  153. Nature. 2000 May 4;405(6782):69-72 [PMID: 10811219]
  154. Trends Genet. 2011 Aug;27(8):332-41 [PMID: 21663992]
  155. Science. 2006 Oct 13;314(5797):312-3 [PMID: 17038625]
  156. Nature. 1998 May 14;393(6681):162-5 [PMID: 11560168]
  157. Nature. 2013 Jul 25;499(7459):431-7 [PMID: 23851394]
  158. Nat Microbiol. 2016 Apr 04;1:16034 [PMID: 27572645]
  159. Res Microbiol. 2001 Nov;152(9):771-80 [PMID: 11763237]
  160. Nat Rev Genet. 2008 Mar;9(3):218-29 [PMID: 18268509]
  161. Curr Opin Microbiol. 2013 Aug;16(4):514-8 [PMID: 23796963]
  162. Cold Spring Harb Symp Quant Biol. 1987;52:839-46 [PMID: 3454292]
  163. Appl Environ Microbiol. 2016 Jul 15;82(15):4505-16 [PMID: 27208108]
  164. Trends Microbiol. 2016 Feb;24(2):84-6 [PMID: 26765541]
  165. Int J Syst Evol Microbiol. 2006 Nov;56(Pt 11):2535-40 [PMID: 17082386]
  166. Am Nat. 1999 Oct;154(S4):S146-S163 [PMID: 10527924]
  167. Trends Ecol Evol. 2015 Aug;30(8):477-86 [PMID: 26111583]
  168. ISME J. 2014 Jun;8(6):1237-46 [PMID: 24401857]
  169. PLoS One. 2011;6(6):e21080 [PMID: 21698163]
  170. Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):1023-38 [PMID: 16754612]
  171. Environ Microbiol. 2017 Jan;19(1):54-69 [PMID: 27112361]
  172. Trends Biochem Sci. 1999 Mar;24(3):88-93 [PMID: 10203753]
  173. Microbiol Mol Biol Rev. 2015 Sep;79(3):293-320 [PMID: 26136581]
  174. Mol Biol Evol. 2010 Jul;27(7):1698-709 [PMID: 20194427]
  175. Ann N Y Acad Sci. 2009 Oct;1178:91-105 [PMID: 19845630]
  176. Nat Microbiol. 2016 Apr 11;1:16048 [PMID: 27572647]
  177. Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):15036-15041 [PMID: 27930295]
  178. Curr Opin Microbiol. 2009 Jun;12(3):231-7 [PMID: 19447672]
  179. Nature. 2000 Oct 5;407(6804):623-6 [PMID: 11034209]
  180. Curr Biol. 2009 Apr 14;19(7):R284-5 [PMID: 19368869]
  181. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576-9 [PMID: 2112744]
  182. Science. 1981 Jul 17;213(4505):340-2 [PMID: 17819907]
  183. Nature. 2016 Jul 06;535(7610):56-64 [PMID: 27383980]
  184. Front Microbiol. 2016 Feb 02;7:46 [PMID: 26870011]
  185. Curr Opin Biotechnol. 2009 Dec;20(6):623-32 [PMID: 19897353]
  186. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20537-42 [PMID: 23184964]
  187. Cold Spring Harb Perspect Biol. 2014 Jul 01;6(7):a016014 [PMID: 24984774]
  188. Nature. 2016 Jul 06;535(7610):65-74 [PMID: 27383981]
  189. Genome Biol Evol. 2014 Jun 12;6(7):1549-63 [PMID: 24923324]

Grants

  1. 322669/European Research Council

MeSH Term

Biological Evolution
Ecosystem
Eukaryota
Eukaryotic Cells
Microbiota
Symbiosis

Word Cloud

Created with Highcharts 10.0.0eukaryoticoriginevolutionarymicrobialMargulissymbioticcellsymbiosismechanismimportancenaturalworldinteractionssymbiogeneticeukaryotescurrentSymbiosisFiftyyearsagoLynninspiringearlytwentieth-centuryideasputforwardorganellesproposedunifiedtheorybasedprofoundlyawareanticipatedsignificanceintegratedcooperativemightincreasecellularcomplexityTodaystartedfullyappreciatingvastextentdiversitysyntrophicmetaboliccooperationecosystemsespeciallysedimentsmatsAlsomitochondriachloroplastsclearlydemonstratedimprovementphylogenomicmethodscombinedrecentdiscoveriesarchaeallineagescloselyrelatedsupportleftuslegacyidea'eukaryogenesissymbiogenesis'AlthoughlargelyverifiedspecificallycellsevolvedyetunclearshortlyreviewknowledgeimpactstatuseukaryogeneticmodelschallengesperspectivesaheadreconstructpathevolutionArchaeaEukaryogenesisEukaryoticoriginsMitochondriaSyntrophy

Similar Articles

Cited By