Heterogeneity between and within Strains of Exposed to Beer Compounds.

Yu Zhao, Susanne Knøchel, Henrik Siegumfeldt
Author Information
  1. Yu Zhao: Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen Frederiksberg, Denmark.
  2. Susanne Knøchel: Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen Frederiksberg, Denmark.
  3. Henrik Siegumfeldt: Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen Frederiksberg, Denmark.

Abstract

This study attempted to investigate the physiological response of six strains to hop stress, with and without the addition of Mn or ethanol. Based on the use of different fluorescent probes, cell viability and intracellular pH (pHi) were assessed by fluorescence microscopy combined with flow cytometry, at the single cell level. The combined approach was faster than the traditional colony based method, but also provided additional information about population heterogeneity with regard to membrane damage and cell size reduction, when exposed to hop compounds. Different physiological subpopulations were detected under hop stress in both hop tolerant and sensitive strains. A large proportion of cells were killed in all the tested strains, but a small subpopulation from the hop tolerant strains eventually recovered as revealed by pHi measurements. Furthermore, a short term protection against hop compounds was obtained for both hop tolerant and sensitive strains, by addition of high concentration of Mn. Addition of ethanol in combination with hop compounds caused an additional short term increase in damaged subpopulation, but the subsequent growth suggested that the presence of ethanol provides a slight cross resistance toward hop compounds.

Keywords

References

  1. Cytometry. 2000 Jul 1;40(3):214-8 [PMID: 10878564]
  2. Science. 2004 Sep 10;305(5690):1622-5 [PMID: 15308767]
  3. Int J Food Microbiol. 2009 Mar 15;130(1):56-60 [PMID: 19187996]
  4. Int J Food Microbiol. 2003 Dec 31;89(2-3):105-24 [PMID: 14623377]
  5. FEMS Microbiol Lett. 2013 Jun;343(1):82-8 [PMID: 23516965]
  6. BMC Microbiol. 2015 Feb 18;15:36 [PMID: 25881030]
  7. Microbiol Rev. 1996 Dec;60(4):641-96 [PMID: 8987359]
  8. J Agric Food Chem. 2009 Jul 22;57(14):6074-81 [PMID: 19537790]
  9. Food Microbiol. 2015 Apr;46:501-6 [PMID: 25475321]
  10. Front Microbiol. 2016 Aug 08;7:1225 [PMID: 27551279]
  11. Int J Food Microbiol. 2006 Jul 1;110(1):1-7 [PMID: 16716423]
  12. Appl Environ Microbiol. 2006 Oct;72(10):6483-92 [PMID: 17021196]
  13. Int J Food Microbiol. 2009 Oct 31;135(2):136-43 [PMID: 19720418]
  14. Appl Environ Microbiol. 2007 May;73(10):3300-6 [PMID: 17369340]
  15. Appl Environ Microbiol. 2001 Apr;67(4):1594-600 [PMID: 11282610]
  16. Appl Environ Microbiol. 2010 Jan;76(1):142-9 [PMID: 19880646]
  17. J Vis Exp. 2012 Feb 15;(60):null [PMID: 22371091]
  18. Appl Environ Microbiol. 1998 Feb;64(2):530-4 [PMID: 9464389]
  19. Appl Environ Microbiol. 2015 Feb;81(4):1234-41 [PMID: 25501474]
  20. J Appl Microbiol. 2004;96(6):1324-32 [PMID: 15139925]
  21. BMC Complement Altern Med. 2014 Aug 06;14:289 [PMID: 25099661]
  22. J Bacteriol. 2007 Oct;189(19):7127-33 [PMID: 17644598]
  23. Biomed Res Int. 2014;2014:461941 [PMID: 25276788]
  24. Appl Environ Microbiol. 2003 Oct;69(10):5826-32 [PMID: 14532031]
  25. Nat Chem Biol. 2010 Oct;6(10 ):705-12 [PMID: 20852608]
  26. Front Microbiol. 2014 Nov 26;5:623 [PMID: 25505451]
  27. Food Microbiol. 2015 Apr;46:553-63 [PMID: 25475328]
  28. Appl Environ Microbiol. 2002 Nov;68(11):5374-8 [PMID: 12406727]
  29. Yeast. 2002 Mar 30;19(5):429-39 [PMID: 11921091]
  30. J Pharm Pharmacol. 2000 Jan;52(1):39-45 [PMID: 10716601]
  31. J Appl Microbiol. 2008 May;104(5):1458-70 [PMID: 18070034]

Word Cloud

Created with Highcharts 10.0.0hopstrainscompoundsethanolcelltolerantphysiologicalstressadditionMnpHifluorescencemicroscopycombinedflowcytometryadditionalheterogeneitysensitivesubpopulationshorttermstudyattemptedinvestigateresponsesixwithoutBasedusedifferentfluorescentprobesviabilityintracellularpHassessedsinglelevelapproachfastertraditionalcolonybasedmethodalsoprovidedinformationpopulationregardmembranedamagesizereductionexposedDifferentsubpopulationsdetectedlargeproportioncellskilledtestedsmalleventuallyrecoveredrevealedmeasurementsFurthermoreprotectionobtainedhighconcentrationAdditioncombinationcausedincreasedamagedsubsequentgrowthsuggestedpresenceprovidesslightcrossresistancetowardHeterogeneitywithinStrainsExposedBeerCompoundsLactobacillusbrevismanganese

Similar Articles

Cited By