Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation.

Monica M Johnson, Ryan Mendoza, Achyut J Raghavendra, Ramakrishna Podila, Jared M Brown
Author Information
  1. Monica M Johnson: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA.
  2. Ryan Mendoza: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA.
  3. Achyut J Raghavendra: Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
  4. Ramakrishna Podila: Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
  5. Jared M Brown: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA.

Abstract

The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcεRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.

References

  1. Nanomedicine. 2013 Nov;9(8):1235-44 [PMID: 23747738]
  2. Acta Biomater. 2013 Nov;9(11):8894-901 [PMID: 23770225]
  3. Small. 2012 Sep 24;8(18):2904-12 [PMID: 22777948]
  4. Nano Lett. 2006 Apr;6(4):662-8 [PMID: 16608261]
  5. J Nanobiotechnology. 2004 Apr 30;2(1):3 [PMID: 15119954]
  6. Nanotoxicology. 2011 Dec;5(4):531-45 [PMID: 21043986]
  7. Environ Toxicol Chem. 2008 Sep;27(9):1825-51 [PMID: 19086204]
  8. Food Chem Toxicol. 2015 Nov;85:78-83 [PMID: 26051351]
  9. J Immunol. 2007 Jul 1;179(1):665-72 [PMID: 17579089]
  10. J Immunol. 2003 Feb 15;170(4):1625-9 [PMID: 12574323]
  11. Curr Drug Metab. 2009 Oct;10(8):895-904 [PMID: 20214584]
  12. Nanotoxicology. 2013 Jun;7(4):417-31 [PMID: 22393878]
  13. Nanotechnology. 2012 Feb 17;23(6):065102 [PMID: 22248930]
  14. Nat Nanotechnol. 2008 Mar;3(3):145-50 [PMID: 18654486]
  15. Toxicol In Vitro. 2015 Feb;29(1):195-203 [PMID: 25458489]
  16. Inhal Toxicol. 2014 Mar;26(4):240-9 [PMID: 24502429]
  17. Nat Immunol. 2005 Feb;6(2):135-42 [PMID: 15662442]
  18. Langmuir. 2008 Apr 15;24(8):4340-6 [PMID: 18341370]
  19. Mol Immunol. 2015 Aug;66(2):139-46 [PMID: 25771180]
  20. Endocrinol Metab Clin North Am. 1988 Jun;17(2):415-36 [PMID: 3042393]
  21. Int J Nanomedicine. 2008;3(2):133-49 [PMID: 18686775]
  22. Curr Opin Allergy Clin Immunol. 2014 Apr;14(2):95-9 [PMID: 24378479]
  23. J Am Chem Soc. 2009 Dec 2;131(47):17328-34 [PMID: 19929020]
  24. Physiol Rev. 1997 Oct;77(4):1033-79 [PMID: 9354811]
  25. Small. 2014 Jan 29;10(2):385-98 [PMID: 24039004]
  26. J Nanopart Res. 2014 Oct 1;16(10):2616 [PMID: 25598696]
  27. Am J Hematol. 2010 May;85(5):315-9 [PMID: 20201089]
  28. Environ Sci Technol. 2010 Sep 1;44(17 ):6532-49 [PMID: 20687602]
  29. Am J Respir Cell Mol Biol. 2007 Jan;36(1):43-52 [PMID: 16902192]
  30. Part Fibre Toxicol. 2012 Jan 19;9:2 [PMID: 22260553]
  31. Environ Sci Technol. 2006 Jul 15;40(14):4336-45 [PMID: 16903268]
  32. J Biochem Mol Toxicol. 2013 Jan;27(1):50-5 [PMID: 23129019]
  33. Toxicology. 2009 Mar 29;257(3):161-71 [PMID: 19150385]
  34. J Neuroimmunol. 2008 Aug 30;200(1-2):27-40 [PMID: 18657868]
  35. J Phys Chem C Nanomater Interfaces. 2012 Oct 18;116(41):22098-22103 [PMID: 23243478]
  36. Allergy Asthma Clin Immunol. 2011 Nov 10;7 Suppl 1:S10 [PMID: 22165859]
  37. Biomaterials. 2010 Nov;31(31):8022-31 [PMID: 20688385]
  38. Mol Immunol. 2002 Sep;38(16-18):1289-93 [PMID: 12217397]
  39. Small. 2013 May 27;9(9-10):1742-52 [PMID: 22945798]
  40. Toxicol Mech Methods. 2013 Mar;23(3):168-77 [PMID: 23256453]
  41. ACS Nano. 2010 Jun 22;4(6):3363-73 [PMID: 20481555]
  42. Nature. 2013 Nov 21;503(7476):397-401 [PMID: 24172897]
  43. Eur J Pharmacol. 2014 Sep 5;738:31-9 [PMID: 24877691]
  44. Int J Nanomedicine. 2012;7:1829-40 [PMID: 22605932]
  45. Nanomedicine. 2016 Aug;12(6):1523-33 [PMID: 27013127]
  46. PLoS One. 2016 Dec 1;11(12 ):e0167366 [PMID: 27907088]
  47. ACS Appl Mater Interfaces. 2016 Jul 6;8(26):16604-11 [PMID: 27281436]
  48. J Biomed Opt. 2010 Jul-Aug;15(4):045005 [PMID: 20799800]
  49. Environ Health Perspect. 2013 Jun;121(6):683-90 [PMID: 23649538]
  50. Clin Immunol. 2004 Feb;110(2):172-80 [PMID: 15003814]
  51. Clin Exp Allergy. 2008 Jan;38(1):4-18 [PMID: 18031566]
  52. Int J Nanomedicine. 2015 Oct 13;10:6509-21 [PMID: 26508856]
  53. Toxicol Sci. 2014 Apr;138(2):249-55 [PMID: 24431216]
  54. Toxicol Sci. 2016 Aug;152(2):406-16 [PMID: 27255384]
  55. J Biol Chem. 2005 Dec 2;280(48):40261-70 [PMID: 16176929]
  56. Inhal Toxicol. 2012 Apr;24(5):320-39 [PMID: 22486349]

Grants

  1. R01 ES019311/NIEHS NIH HHS

MeSH Term

Animals
Bioengineering
Cell Degranulation
Cell Survival
Cells, Cultured
Chemical Phenomena
Mast Cells
Mice
Nanostructures
Osteopontin

Chemicals

Osteopontin

Word Cloud

Created with Highcharts 10.0.0mastENMscellsresponsephysicochemicalpropertiescelldegranulationimmuneresponsesengineerednanomaterialsincreasedenvironmentalmayMastAgdependentENMallergicrapiddevelopmentgrowndramaticallylastdecadeuseconsumerproductsindustrialmaterialsnanomedicinesHoweverduemanufacturingconcernhumanexposuresleadadverseoutcomescentralinnateoneearliestsensorsinsultshownplayroleENM-mediatedlaboratorypreviouslydeterminedactivatedvianon-FcεRImediatedfollowingsilvernanoparticleNPexposureuponkeyUsingbonemarrow-derivedBMMCstestedhypothesisinfluenceExposure13physicochemicallydistinctcausedrangesmallersizedNPs5 nm20 nmcausingdramaticsizeapparentsurfaceareazetapotentialSurprisinglyminimalcellularassociationcorrelatedstudysuggestssubsetelicitcontributeexacerbationdiseasesContribution

Similar Articles

Cited By