Phosphorylated Nuclear Receptor CAR Forms a Homodimer To Repress Its Constitutive Activity for Ligand Activation.

Ryota Shizu, Makoto Osabe, Lalith Perera, Rick Moore, Tatsuya Sueyoshi, Masahiko Negishi
Author Information
  1. Ryota Shizu: Pharmacogenetic Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
  2. Makoto Osabe: Pharmacogenetic Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
  3. Lalith Perera: Computational Chemistry and Molecular Modeling Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
  4. Rick Moore: Pharmacogenetic Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
  5. Tatsuya Sueyoshi: Pharmacogenetic Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
  6. Masahiko Negishi: Pharmacogenetic Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA negishi@niehs.nih.gov.

Abstract

The nuclear receptor CAR (NR1I3) regulates hepatic drug and energy metabolism as well as cell fate. Its activation can be a critical factor in drug-induced toxicity and the development of diseases, including diabetes and tumors. CAR inactivates its constitutive activity by phosphorylation at threonine 38. Utilizing receptor for protein kinase 1 (RACK1) as the regulatory subunit, protein phosphatase 2A (PP2A) dephosphorylates threonine 38 to activate CAR. Here we demonstrate that CAR undergoes homodimer-monomer conversion to regulate this dephosphorylation. By coexpression of two differently tagged CAR proteins in Huh-7 cells, mouse primary hepatocytes, and mouse livers, coimmunoprecipitation and two-dimensional gel electrophoresis revealed that CAR can form a homodimer in a configuration in which the PP2A/RACK1 binding site is buried within its dimer interface. Epidermal growth factor (EGF) was found to stimulate CAR homodimerization, thus constraining CAR in its inactive form. The agonistic ligand CITCO binds directly to the CAR homodimer and dissociates phosphorylated CAR into its monomers, exposing the PP2A/RACK1 binding site for dephosphorylation. Phenobarbital, which is not a CAR ligand, binds the EGF receptor, reversing the EGF signal to monomerize CAR for its indirect activation. Thus, the homodimer-monomer conversion is the underlying molecular mechanism that regulates CAR activation, by placing phosphorylated threonine 38 as the common target for both direct and indirect activation of CAR.

Keywords

References

  1. Nat Rev Mol Cell Biol. 2003 Jan;4(1):46-56 [PMID: 12511868]
  2. J Biol Chem. 2011 Oct 14;286(41):35763-9 [PMID: 21873423]
  3. Mol Cell. 2004 Dec 22;16(6):893-905 [PMID: 15610733]
  4. Mol Cell Biol. 2001 Feb;21(3):781-93 [PMID: 11154266]
  5. Mol Pharmacol. 2014 Feb;85(2):249-60 [PMID: 24252946]
  6. Mol Cell Biol. 1999 Sep;19(9):6318-22 [PMID: 10454578]
  7. Mol Cell. 2004 Dec 22;16(6):907-17 [PMID: 15610734]
  8. Cancer Res. 2004 Oct 15;64(20):7197-200 [PMID: 15492232]
  9. Steroids. 2008 Oct;73(9-10):1025-9 [PMID: 18221974]
  10. Endocr Rev. 1998 Feb;19(1):3-17 [PMID: 9494778]
  11. Mol Endocrinol. 2005 Jun;19(6):1646-53 [PMID: 15831521]
  12. PLoS One. 2010 Apr 12;5(4):e10121 [PMID: 20404936]
  13. Cell. 2002 Jul 12;110(1):93-105 [PMID: 12151000]
  14. FEBS Lett. 2003 Jul 31;548(1-3):17-20 [PMID: 12885400]
  15. Nature. 2011 Mar 17;471(7338):387-91 [PMID: 21412339]
  16. J Biol Chem. 2009 Dec 11;284(50):34785-92 [PMID: 19858220]
  17. Cell. 1998 Dec 23;95(7):927-37 [PMID: 9875847]
  18. Sci Signal. 2013 May 07;6(274):ra31 [PMID: 23652203]
  19. Nature. 2013 Mar 21;495(7441):394-8 [PMID: 23485969]
  20. Curr Drug Metab. 2008 Sep;9(7):614-21 [PMID: 18781913]
  21. Nature. 1997 Oct 16;389(6652):753-8 [PMID: 9338790]
  22. J Immunol. 2008 Feb 15;180(4):2608-15 [PMID: 18250472]
  23. Mol Cell Biol. 2001 Apr;21(8):2838-46 [PMID: 11283262]
  24. J Biol Chem. 1996 Apr 19;271(16):9746-53 [PMID: 8621653]
  25. Mol Endocrinol. 2016 Oct;30(10 ):1070-1080 [PMID: 27571290]
  26. Mol Pharmacol. 2002 Jan;61(1):1-6 [PMID: 11752199]
  27. Microsc Res Tech. 2006 Dec;69(12 ):941-56 [PMID: 17080432]
  28. Cell Cycle. 2009 Jun 1;8(11):1675-80 [PMID: 19448403]
  29. PLoS One. 2014 Dec 26;9(12 ):e115663 [PMID: 25542016]
  30. Mol Pharmacol. 2007 May;71(5):1217-21 [PMID: 17314319]
  31. Mol Pharmacol. 2003 Nov;64(5):1069-75 [PMID: 14573755]
  32. Mol Cell. 2004 Dec 22;16(6):919-28 [PMID: 15610735]
  33. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18831-6 [PMID: 19850873]
  34. Hepatology. 2001 May;33(5):1232-8 [PMID: 11343253]
  35. PLoS One. 2013 Dec 26;8(12):e84462 [PMID: 24386386]
  36. Mol Cell Biol. 1998 Oct;18(10 ):5652-8 [PMID: 9742082]
  37. J Biol Chem. 1999 Mar 5;274(10):6043-6 [PMID: 10037683]

MeSH Term

Animals
Cells, Cultured
Constitutive Androstane Receptor
Epidermal Growth Factor
ErbB Receptors
Gene Expression Regulation
Hepatocytes
Humans
Ligands
Male
Mice
Mice, Inbred C3H
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Neuropeptides
Phosphorylation
Protein Multimerization
Protein Phosphatase 2
Receptors for Activated C Kinase
Receptors, Cytoplasmic and Nuclear

Chemicals

Constitutive Androstane Receptor
Ligands
NR1I3 protein, human
Neuropeptides
Nr1i3 protein, mouse
RACK1 protein, mouse
Receptors for Activated C Kinase
Receptors, Cytoplasmic and Nuclear
Epidermal Growth Factor
ErbB Receptors
Protein Phosphatase 2

Word Cloud

Created with Highcharts 10.0.0CARreceptoractivationthreonine38proteinhomodimerEGFnuclearregulatescellcanfactorconstitutivephosphorylationhomodimer-monomerconversiondephosphorylationmouseformPP2A/RACK1bindingsiteligandCITCObindsphosphorylatedindirectNR1I3hepaticdrugenergymetabolismwellfatecriticaldrug-inducedtoxicitydevelopmentdiseasesincludingdiabetestumorsinactivatesactivityUtilizingkinase1RACK1regulatorysubunitphosphatase2APP2AdephosphorylatesactivatedemonstrateundergoesregulatecoexpressiontwodifferentlytaggedproteinsHuh-7cellsprimaryhepatocytesliverscoimmunoprecipitationtwo-dimensionalgelelectrophoresisrevealedconfigurationburiedwithindimerinterfaceEpidermalgrowthfoundstimulatehomodimerizationthusconstraininginactiveagonisticdirectlydissociatesmonomersexposingPhenobarbitalreversingsignalmonomerizeThusunderlyingmolecularmechanismplacingcommontargetdirectPhosphorylatedNuclearReceptorFormsHomodimerRepressConstitutiveActivityLigandActivationsignalingandrostanereceptorsphenobarbital

Similar Articles

Cited By