Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.

Jalil Taghia, Srikanth Ryali, Tianwen Chen, Kaustubh Supekar, Weidong Cai, Vinod Menon
Author Information
  1. Jalil Taghia: Department of Psychiatry & Behavioral Sciences Stanford University, School of Medicine, Stanford, CA 94305, USA. Electronic address: taghia@stanford.edu.
  2. Srikanth Ryali: Department of Psychiatry & Behavioral Sciences Stanford University, School of Medicine, Stanford, CA 94305, USA.
  3. Tianwen Chen: Department of Psychiatry & Behavioral Sciences Stanford University, School of Medicine, Stanford, CA 94305, USA.
  4. Kaustubh Supekar: Department of Psychiatry & Behavioral Sciences Stanford University, School of Medicine, Stanford, CA 94305, USA.
  5. Weidong Cai: Department of Psychiatry & Behavioral Sciences Stanford University, School of Medicine, Stanford, CA 94305, USA.
  6. Vinod Menon: Department of Psychiatry & Behavioral Sciences Stanford University, School of Medicine, Stanford, CA 94305, USA; Department of Neurology & Neurological Sciences, School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Institute Stanford University, School of Medicine, Stanford, CA 94305, USA. Electronic address: menon@stanford.edu.

Abstract

There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal flexibility among the three networks. Our proposed methods provide a novel and powerful generative model for investigating dynamic brain connectivity.

Keywords

References

  1. Elife. 2014 Mar 25;3:e01867 [PMID: 24668169]
  2. Neuroimage. 2016 Feb 1;126:81-95 [PMID: 26631815]
  3. Neuroimage. 2015 Mar;108:274-91 [PMID: 25534114]
  4. PLoS Biol. 2016 Jun 07;14(6):e1002469 [PMID: 27270215]
  5. IEEE Trans Biomed Eng. 2017 Apr;64(4):844-858 [PMID: 27323355]
  6. Med Image Comput Comput Assist Interv. 2015 Oct;9349:573-580 [PMID: 27054199]
  7. Brain Struct Funct. 2010 Jun;214(5-6):655-67 [PMID: 20512370]
  8. Cereb Cortex. 2012 Jan;22(1):158-65 [PMID: 21616982]
  9. Neuroimage. 2012 Jul 16;61(4):907-20 [PMID: 22484408]
  10. Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 [PMID: 12506194]
  11. Neuron. 2014 Oct 22;84(2):262-74 [PMID: 25374354]
  12. Inf Process Med Imaging. 2013;23:426-37 [PMID: 24683988]
  13. Neuroimage. 2003 Aug;19(4):1477-91 [PMID: 12948704]
  14. Neuroinformatics. 2004;2(2):205-26 [PMID: 15319517]
  15. Nat Neurosci. 2013 Jul;16(7):832-7 [PMID: 23799476]
  16. J Neurosci. 2007 Feb 28;27(9):2349-56 [PMID: 17329432]
  17. Trends Cogn Sci. 2011 Oct;15(10):483-506 [PMID: 21908230]
  18. Nat Neurosci. 2016 Jan;19(1):165-71 [PMID: 26595653]
  19. Neuroimage. 2014 Nov 1;101:531-46 [PMID: 24993894]
  20. Trends Cogn Sci. 2008 Mar;12(3):99-105 [PMID: 18262825]
  21. PLoS Comput Biol. 2008 Aug 29;4(8):e1000092 [PMID: 18769680]
  22. PLoS Comput Biol. 2016 Dec 13;12(12):e1005138 [PMID: 27959921]
  23. Neuroimage. 2010 Mar;50(1):81-98 [PMID: 20006716]
  24. Neuron. 2013 Aug 21;79(4):798-813 [PMID: 23972601]
  25. Magn Reson Med. 1995 Oct;34(4):537-41 [PMID: 8524021]
  26. Neuroimage. 2010 Sep;52(3):1027-40 [PMID: 19969092]
  27. Magn Reson Imaging. 2010 Oct;28(8):1058-65 [PMID: 20444566]
  28. Neural Comput. 2015 Sep;27(9):1857-71 [PMID: 26161816]
  29. Neuroimage. 2015 Jan 1;104:430-6 [PMID: 25234118]
  30. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3131-6 [PMID: 22323591]
  31. Nat Neurosci. 2015 Nov;18(11):1664-71 [PMID: 26457551]
  32. Cereb Cortex. 2016 May;26(5):2140-53 [PMID: 25778346]
  33. Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10341-6 [PMID: 24982140]
  34. Neuron. 2014 Jul 2;83(1):238-51 [PMID: 24991964]
  35. Cereb Cortex. 2014 Mar;24(3):663-76 [PMID: 23146964]
  36. Nat Commun. 2015 Jul 16;6:7751 [PMID: 26178017]

Grants

  1. RF1 NS086085/NINDS NIH HHS
  2. K01 MH105625/NIMH NIH HHS
  3. K25 HD074652/NICHD NIH HHS
  4. R01 NS086085/NINDS NIH HHS
  5. R01 EB022907/NIBIB NIH HHS

MeSH Term

Adult
Bayes Theorem
Brain
Connectome
Factor Analysis, Statistical
Female
Humans
Magnetic Resonance Imaging
Male
Models, Theoretical
Nerve Net
Young Adult

Word Cloud

Created with Highcharts 10.0.0modelBSFAfunctionalBayesiananalysisbrainfMRIgenerativedynamictemporaldatafactornetworksstatesinteractionsmethodsmodelingtime-varyingframeworkMarkovmodelsswitchinglatentusingHCPresultssalienceconnectivitygrowinginterestunderstandingdynamicalpropertiesdistributedregionsHoweverrobustestimationdynamicsmagneticresonanceimagingremainschallengingduelimitationsextantmultivariatemultipleareasdeveloptime-serieswithinhiddenHMMsvariantstaticGhahramaniBeal2000referintegratesHMMunifiedrepresentedlearntCruciallyestimatesevolutiontransitionprobabilitiesfunctiontimeattractivefeatureautomaticdeterminationnumberviaselectionarisingpenalizationexcessivelycomplexKeyfeaturesvalidatedextensivesimulationscarefullydesignedsyntheticvalidatefingerprintmultisessionresting-stateHumanConnectomeProjectshowdependenciesimprovedfingerprintingindividualparticipantsFinallyapplyelucidateorganizationcentral-executivedefaultmodenetworks-threecoreneurocognitivesystemscentralrolecognitiveaffectiveinformationprocessingMenon2011AcrosstwosessionsdemonstratehighleveldeterminenetworkhighestflexibilityamongthreeproposedprovidenovelpowerfulinvestigatingestimatinginferenceDynamicFactorHiddenResting-state

Similar Articles

Cited By