The Cognitive Neuroplasticity of Reading Recovery following Chronic Stroke: A Representational Similarity Analysis Approach.

Simon Fischer-Baum, Ava Jang, David Kajander
Author Information
  1. Simon Fischer-Baum: Department of Psychology, Rice University, Houston, TX, USA. ORCID
  2. Ava Jang: Department of Psychology, Rice University, Houston, TX, USA.
  3. David Kajander: Department of Psychology, University of Massachusetts, Amherst, MA, USA.

Abstract

Damage to certain left hemisphere regions leads to reading impairments, at least acutely, though some individuals eventually recover reading. Previous neuroimaging studies have shown a relationship between reading recovery and increases in contralesional and perilesional activation during word reading tasks, relative to controls. Questions remain about how to interpret these changes in activation. Do these changes reflect functional take-over, a reorganization of functions in the damaged brain? Or do they reveal compensatory masquerade or the use of alternative neural pathways to reading that are available in both patients and controls? We address these questions by studying a single individual, CH, who has made a partial recovery of reading familiar words following stroke. We use an fMRI analysis technique, representational similarity analysis (RSA), which allows us to decode cognitive function from distributed patterns of neural activity. Relative to controls, we find that CH shows a shift from visual to orthographic processing in contralesional regions, with a marginally significant result in perilesional regions as well. This pattern supports a contralesional reorganization of orthographic processing following stroke. More generally, these analyses demonstrate how powerful RSA can be for mapping the neural plasticity of language function.

References

  1. J Commun Disord. 2000 Jul-Aug;33(4):345-55; quiz 355-6 [PMID: 11001161]
  2. Behav Neurol. 2000;12(4):191-200 [PMID: 11568431]
  3. Neuroimage. 2002 Jan;15(1):273-89 [PMID: 11771995]
  4. J Exp Psychol Gen. 2002 Mar;131(1):65-72 [PMID: 11900104]
  5. Psychol Aging. 2002 Mar;17(1):85-100 [PMID: 11931290]
  6. Neuroimage. 2002 Jul;16(3 Pt 1):765-80 [PMID: 12169260]
  7. Neuroimage. 2004 May;22(1):466-76 [PMID: 15110040]
  8. Neuropsychologia. 2004;42(13):1768-80 [PMID: 15351626]
  9. Neuroimage. 2005 Jan 15;24(2):548-59 [PMID: 15627597]
  10. Brain Lang. 2005 Apr;93(1):95-105 [PMID: 15766771]
  11. Neuropsychologia. 2005;43(14):1983-9 [PMID: 15904939]
  12. Med Image Anal. 2006 Jun;10(3):397-412 [PMID: 15948659]
  13. Trends Cogn Sci. 2005 Jul;9(7):335-41 [PMID: 15951224]
  14. Behav Neurol. 2005;16(4):191-202 [PMID: 16518009]
  15. Brain. 2006 Jun;129(Pt 6):1371-84 [PMID: 16638796]
  16. Brain. 2006 Jun;129(Pt 6):1351-6 [PMID: 16738058]
  17. Trends Cogn Sci. 2006 Sep;10(9):424-30 [PMID: 16899397]
  18. Ann Neurol. 2007 Nov;62(5):481-92 [PMID: 17702036]
  19. Brain Lang. 2008 Nov;107(2):170-8 [PMID: 17889315]
  20. Cortex. 2008 Jul-Aug;44(7):773-81 [PMID: 18489958]
  21. Neurocase. 2007 Oct;13(5):417-25 [PMID: 18781441]
  22. Curr Neurol Neurosci Rep. 2008 Nov;8(6):475-83 [PMID: 18957184]
  23. Neuroimage. 2009 Mar;45(1 Suppl):S199-209 [PMID: 19070668]
  24. Front Syst Neurosci. 2008 Nov 24;2:4 [PMID: 19104670]
  25. Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):322-7 [PMID: 19118194]
  26. J Cogn Neurosci. 2010 Jun;22(6):1299-318 [PMID: 19413476]
  27. Br Med J. 1877 Jul 28;2(865):103-4 [PMID: 20748595]
  28. Cogn Neuropsychol. 2006 Sep;23(6):795-821 [PMID: 21049354]
  29. Neuroimage. 2011 Apr 1;55(3):1357-72 [PMID: 21168516]
  30. Neurology. 2011 May 17;76(20):1726-34 [PMID: 21576689]
  31. Trends Cogn Sci. 2011 Jun;15(6):254-62 [PMID: 21592844]
  32. Front Psychol. 2011 Apr 13;2:54 [PMID: 21716577]
  33. Cortex. 2012 Oct;48(9):1179-86 [PMID: 21794852]
  34. Cereb Cortex. 2012 Dec;22(12):2715-32 [PMID: 22235035]
  35. Neuroimage. 2012 Aug 15;62(2):816-47 [PMID: 22584224]
  36. Brain Lang. 1990 Oct;39(3):405-27 [PMID: 2285860]
  37. Neuropsychologia. 2012 Dec;50(14):3621-35 [PMID: 23017598]
  38. Neuroimage. 2014 Apr 1;89:331-44 [PMID: 24321558]
  39. Cogn Neuropsychol. 2013;30(6):360-95 [PMID: 24512594]
  40. Cogn Neuropsychol. 2014;31(5-6):511-28 [PMID: 24527769]
  41. Annu Rev Neurosci. 2014;37:435-56 [PMID: 25002277]
  42. Cogn Neuropsychol. 2015;32(2):80-8 [PMID: 25885676]
  43. Cortex. 1989 Dec;25(4):555-66 [PMID: 2612175]
  44. Cogn Neuropsychol. 1998 Mar 1;15(1-2):141-165 [PMID: 28657519]
  45. Cogn Neuropsychol. 1998 Mar 1;15(1-2):203-238 [PMID: 28657523]
  46. Brain. 1965 Sep;88(3):585-644 [PMID: 5318824]
  47. J Exp Psychol. 1969 Aug;81(2):275-80 [PMID: 5811803]
  48. Can J Psychol. 1984 Mar;38(1):126-34 [PMID: 6713295]
  49. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):914-21 [PMID: 9448259]
  50. J Comput Assist Tomogr. 1998 Mar-Apr;22(2):324-33 [PMID: 9530404]
  51. Neuropsychologia. 1998 Mar;36(3):239-49 [PMID: 9622189]

MeSH Term

Aphasia
Cognition
Humans
Magnetic Resonance Imaging
Male
Middle Aged
Neuronal Plasticity
Reading
Recovery of Function
Stroke

Word Cloud

Created with Highcharts 10.0.0readingregionscontralesionalneuralfollowingrecoveryperilesionalactivationcontrolschangesreorganizationuseCHstrokeanalysisRSAfunctionorthographicprocessingDamagecertainlefthemisphereleadsimpairmentsleastacutelythoughindividualseventuallyrecoverPreviousneuroimagingstudiesshownrelationshipincreaseswordtasksrelativeQuestionsremaininterpretreflectfunctionaltake-overfunctionsdamagedbrain?revealcompensatorymasqueradealternativepathwaysavailablepatientscontrols?addressquestionsstudyingsingleindividualmadepartialfamiliarwordsfMRItechniquerepresentationalsimilarityallowsusdecodecognitivedistributedpatternsactivityRelativefindshowsshiftvisualmarginallysignificantresultwellpatternsupportsgenerallyanalysesdemonstratepowerfulcanmappingplasticitylanguageCognitiveNeuroplasticityReadingRecoveryChronicStroke:RepresentationalSimilarityAnalysisApproach

Similar Articles

Cited By