The lytic polysaccharide monooxygenase LPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans.

Mathieu Fanuel, Sona Garajova, David Ropartz, Nicholas McGregor, Harry Brumer, Hélène Rogniaux, Jean-Guy Berrin
Author Information
  1. Mathieu Fanuel: Unité de Recherche Biopolymères, Interactions, Assemblages, INRA, 44316 Nantes, France.
  2. Sona Garajova: Polytech Marseille, UMR1163 Biodiversité et Biotechnologie Fongiques, INRA, Aix-Marseille Université, Avenue de Luminy, 13288 Marseille, France.
  3. David Ropartz: Unité de Recherche Biopolymères, Interactions, Assemblages, INRA, 44316 Nantes, France.
  4. Nicholas McGregor: Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4 Canada.
  5. Harry Brumer: Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4 Canada.
  6. Hélène Rogniaux: Unité de Recherche Biopolymères, Interactions, Assemblages, INRA, 44316 Nantes, France.
  7. Jean-Guy Berrin: Polytech Marseille, UMR1163 Biodiversité et Biotechnologie Fongiques, INRA, Aix-Marseille Université, Avenue de Luminy, 13288 Marseille, France. ORCID

Abstract

BACKGROUND: The enzymatic conversion of plant biomass has been recently revolutionized by the discovery of lytic polysaccharide monooxygenases (LPMO) that catalyze oxidative cleavage of polysaccharides. These powerful enzymes are secreted by a large number of fungal saprotrophs and are important components of commercial enzyme cocktails used for industrial biomass conversion. Among the 33 AA9 LPMOs encoded by the genome of , the LPMO9H enzyme catalyzes mixed C1/C4 oxidative cleavage of cellulose and cello-oligosaccharides. Activity of LPMO9H on several hemicelluloses has been suggested, but the regioselectivity of the cleavage remained to be determined.
RESULTS: In this study, we investigated the activity of LPMO9H on mixed-linkage glucans, xyloglucan and glucomannan using tandem mass spectrometry and ion mobility-mass spectrometry. Structural analysis of the released products revealed that LPMO9H catalyzes C4 oxidative cleavage of mixed-linkage glucans and mixed C1/C4 oxidative cleavage of glucomannan and xyloglucan. Gem-diols and ketones were produced at the non-reducing end, while aldonic acids were produced at the reducing extremity of the products.
CONCLUSION: The ability of LPMO9H to target polysaccharides, differing from cellulose by their linkages, glycosidic composition and/or presence of sidechains, could be advantageous for this coprophilous fungus when catabolizing highly variable polysaccharides and for the development of optimized enzyme cocktails in biorefineries.

Keywords

References

  1. Biotechnol Biofuels. 2015 Jul 17;8:101 [PMID: 26185526]
  2. Appl Microbiol Biotechnol. 2016 May;100(10):4535-47 [PMID: 27075737]
  3. Appl Environ Microbiol. 2013 Jan;79(2):488-96 [PMID: 23124232]
  4. Nat Commun. 2015 Jan 22;6:5961 [PMID: 25608804]
  5. Nat Chem Biol. 2016 Apr;12(4):298-303 [PMID: 26928935]
  6. J Am Chem Soc. 2012 Jan 18;134(2):890-2 [PMID: 22188218]
  7. J Biol Chem. 2016 Jan 15;291(3):1175-97 [PMID: 26507654]
  8. Biotechnol Biofuels. 2015 Jun 20;8:90 [PMID: 26136828]
  9. Biotechnol Biofuels. 2013 Mar 21;6(1):41 [PMID: 23514094]
  10. Carbohydr Res. 2015 Jan 30;402:56-66 [PMID: 25497333]
  11. Biochem Soc Trans. 2016 Feb;44(1):143-9 [PMID: 26862199]
  12. Science. 2010 Oct 8;330(6001):219-22 [PMID: 20929773]
  13. Annu Rev Plant Biol. 2010;61:263-89 [PMID: 20192742]
  14. Genome Biol. 2008;9(5):R77 [PMID: 18460219]
  15. J Biol Chem. 2014 Jan 31;289(5):2632-42 [PMID: 24324265]
  16. Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15079-84 [PMID: 21876164]
  17. Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6287-92 [PMID: 24733907]
  18. FEBS Lett. 2016 Oct;590(19):3346-3356 [PMID: 27587308]
  19. Biotechnol Adv. 2016 Sep-Oct;34(5):976-983 [PMID: 27263000]
  20. Biochemistry. 2014 Mar 18;53(10):1647-56 [PMID: 24559135]
  21. Proteomics. 2009 Dec;9(24):5398-9 [PMID: 19902428]
  22. Front Plant Sci. 2012 Jun 15;3:130 [PMID: 22715340]
  23. Curr Opin Chem Biol. 2016 Apr;31:195-207 [PMID: 27094791]
  24. Appl Environ Microbiol. 2016 Oct 27;82(22):6557-6572 [PMID: 27590806]
  25. Trends Biochem Sci. 2016 Jul;41(7):633-645 [PMID: 27211037]
  26. Nat Chem Biol. 2014 Feb;10(2):122-6 [PMID: 24362702]
  27. Biochemistry. 2010 Apr 20;49(15):3305-16 [PMID: 20230050]

Word Cloud

Created with Highcharts 10.0.0cleavageLPMO9HoxidativepolysaccharidesenzymecatalyzesspectrometryconversionplantbiomasslyticpolysaccharideLPMOcocktailsAA9mixedC1/C4cellulosemixed-linkageglucansxyloglucanglucomannanproductsproducedBACKGROUND:enzymaticrecentlyrevolutionizeddiscoverymonooxygenasescatalyzepowerfulenzymessecretedlargenumberfungalsaprotrophsimportantcomponentscommercialusedindustrialAmong33LPMOsencodedgenomecello-oligosaccharidesActivityseveralhemicellulosessuggestedregioselectivityremaineddeterminedRESULTS:studyinvestigatedactivityusingtandemmassionmobility-massStructuralanalysisreleasedrevealedC4Gem-diolsketonesnon-reducingendaldonicacidsreducingextremityCONCLUSION:abilitytargetdifferinglinkagesglycosidiccompositionand/orpresencesidechainsadvantageouscoprophilousfunguscatabolizinghighlyvariabledevelopmentoptimizedbiorefineriesmonooxygenasediversecellwallmatrixglycansBiomassBiorefineryLignocelluloseMassPolysaccharides

Similar Articles

Cited By