Immunoglobulin T from sea bass (Dicentrarchus labrax L.): molecular characterization, tissue localization and expression after nodavirus infection.

Francesco Buonocore, Valentina Stocchi, Noelia Nunez-Ortiz, Elisa Randelli, Marco Gerdol, Alberto Pallavicini, Angelo Facchiano, Chiara Bernini, Laura Guerra, Giuseppe Scapigliati, Simona Picchietti
Author Information
  1. Francesco Buonocore: Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy. fbuono@unitus.it. ORCID
  2. Valentina Stocchi: Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy.
  3. Noelia Nunez-Ortiz: Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy.
  4. Elisa Randelli: Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy.
  5. Marco Gerdol: Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, TS, Italy.
  6. Alberto Pallavicini: Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, TS, Italy.
  7. Angelo Facchiano: Institute of Food Science, CNR, Via Roma, 64, 83100, Avellino, AV, Italy.
  8. Chiara Bernini: Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy.
  9. Laura Guerra: Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy.
  10. Giuseppe Scapigliati: Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy.
  11. Simona Picchietti: Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy.

Abstract

BACKGROUND: Immunoglobulins (Igs) are fundamental components of the adaptive immune system of vertebrates, with the IgT/IgZ isotype specific of Teleosts. In this paper we describe the identification of an IgT heavy chain from the European sea bass (Dicentrarchus labrax L.), its molecular characterization and tissue mRNA localization by in situ hybridization.
RESULTS: Sea bass IgT consists of 552 aa (Accession Number KM410929) and it contains a putative 19 amino acids long signal peptide and one potential N-glycosylation site. The C-region consists of four C domains; each contains the cysteine and tryptophan residues required for their correct folding. Based on the recent sequencing of sea bass genome, we have identified five different genomic contigs bearing exons unequivocally pertaining to IgT (C2, C3 and C4), but none corresponded to a complete IgH locus as IgT sequences were found in the highly fragmented assembled genomic regions which could not be assigned to any major scaffold. The 3D structure of sea bass IgT has been modelled using the crystal structure of a mouse Ig gamma as a template, thus showing that the amino acid sequence is suitable for the expected topology referred to an immunoglobulin-like architecture. The basal expression of sea bass IgT and IgM in different organs has been analysed: gut and gills, important mucosal organs, showed high IgT transcripts levels and this was the first indication of the possible involvement of sea bass IgT in mucosal immune responses. Moreover, sea bass IgT expression increased in gills and spleen after infection with nodavirus, highlighting the importance of IgT in sea bass immune responses. In situ hybridization confirmed the presence of IgT transcripts in the gut and it revealed a differential expression along the intestinal tract, with a major expression in the posterior intestine, suggesting the hindgut as a site for the recruitment of IgT cells in this species. IgT transcripts were also found in gill filaments and parallel lamellae and, for the first time, we identified scattered IgT positive cells in the liver, with a strong signal in the hepatic parenchyma.
CONCLUSIONS: In conclusion, we performed a full molecular characterization of IgT in sea bass that points out its possible involvement in mucosal immune responses of this species.

Keywords

References

  1. Nat Immunol. 2010 Sep;11(9):827-35 [PMID: 20676094]
  2. Fish Shellfish Immunol. 2015 Nov;47(1):28-33 [PMID: 26306856]
  3. Dev Comp Immunol. 2010 Feb;34(2):114-22 [PMID: 19733587]
  4. Nat Commun. 2014 Dec 23;5:5770 [PMID: 25534655]
  5. J Mol Biol. 1982 Sep 15;160(2):325-42 [PMID: 7175935]
  6. Immunol Rev. 2010 Sep;237(1):160-79 [PMID: 20727035]
  7. Dev Comp Immunol. 2014 Dec;47(2):309-18 [PMID: 25109574]
  8. Nucleic Acids Res. 2003 Jul 1;31(13):3316-9 [PMID: 12824316]
  9. PLoS Pathog. 2013 Jan;9(1):e1003098 [PMID: 23326228]
  10. Fish Shellfish Immunol. 2013 Oct;35(4):1260-71 [PMID: 23932985]
  11. BMC Evol Biol. 2011 Jun 15;11:165 [PMID: 21676244]
  12. Fish Shellfish Immunol. 2001 Jan;11(1):65-74 [PMID: 11271603]
  13. Nat Rev Genet. 2010 Jan;11(1):47-59 [PMID: 19997068]
  14. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2501-6 [PMID: 12606718]
  15. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3289-93 [PMID: 8622930]
  16. Dev Comp Immunol. 2010 Nov;34(11):1183-90 [PMID: 20600275]
  17. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12087-92 [PMID: 16877547]
  18. Nat Commun. 2016 Feb 12;7:10728 [PMID: 26869478]
  19. Vet Immunol Immunopathol. 2011 Jan;139(1):17-26 [PMID: 20801526]
  20. Nat Rev Immunol. 2002 Sep;2(9):688-98 [PMID: 12209137]
  21. Fish Shellfish Immunol. 2011 Nov;31(5):627-34 [PMID: 21466854]
  22. PLoS One. 2013 Jun 13;8(6):e66118 [PMID: 23785475]
  23. Immunogenetics. 2005 Jul;57(6):458-63 [PMID: 16025325]
  24. Eur J Immunol. 2005 Nov;35(11):3320-31 [PMID: 16224815]
  25. PLoS One. 2012;7(10):e47957 [PMID: 23133531]
  26. Dev Comp Immunol. 2014 Oct;46(2):518-29 [PMID: 24718255]
  27. Dev Comp Immunol. 2011 Dec;35(12):1309-16 [PMID: 21414345]
  28. Biomolecules. 2015 Feb 27;5(1):166-77 [PMID: 25734583]
  29. J Biol Chem. 1999 Nov 19;274(47):33771-7 [PMID: 10559270]
  30. Nature. 1983 Apr 14;302(5909):575-81 [PMID: 6300689]
  31. Dev Comp Immunol. 2006;30(1-2):77-92 [PMID: 16153707]
  32. Mol Immunol. 2010 Jan;47(4):738-46 [PMID: 19931913]
  33. Dev Comp Immunol. 2016 Nov;64:150-66 [PMID: 26995768]
  34. Dev Comp Immunol. 2014 Mar;43(1):76-86 [PMID: 24231183]
  35. Front Immunol. 2015 Jul 15;6:354 [PMID: 26236311]
  36. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  37. Biochemistry. 1997 Feb 18;36(7):1581-97 [PMID: 9048542]
  38. PLoS One. 2014 Oct 22;9(10):e111084 [PMID: 25338079]
  39. Protein Eng. 1997 Jan;10(1):1-6 [PMID: 9051728]
  40. Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13097-102 [PMID: 23884653]
  41. Nat Immunol. 2005 Mar;6(3):295-302 [PMID: 15685175]
  42. Dev Comp Immunol. 2016 Dec;65:64-72 [PMID: 27370973]
  43. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10 [PMID: 17517781]
  44. Anat Embryol (Berl). 1997 Dec;196(6):457-63 [PMID: 9453366]
  45. Fish Shellfish Immunol. 2010 Feb;28(2):303-11 [PMID: 19925869]
  46. Fish Shellfish Immunol. 2001 Nov;11(8):711-26 [PMID: 11759041]
  47. Immunol Today. 1995 Aug;16(8):392-8 [PMID: 7546196]
  48. Biology (Basel). 2015 Aug 12;4(3):525-39 [PMID: 26274978]
  49. Fish Shellfish Immunol. 2014 Oct;40(2):634-43 [PMID: 25150451]
  50. Mol Biol Evol. 2007 Aug;24(8):1596-9 [PMID: 17488738]
  51. Infect Disord Drug Targets. 2012 Jun;12(3):200-12 [PMID: 22394174]
  52. Proc Natl Acad Sci U S A. 2005 May 10;102(19):6919-24 [PMID: 15863615]
  53. Fish Shellfish Immunol. 2011 Mar;30(3):859-69 [PMID: 21272651]
  54. BMC Genomics. 2010 Sep 02;11:486 [PMID: 20813058]
  55. Mar Genomics. 2015 Dec;24 Pt 1:55-68 [PMID: 26122835]
  56. Dev Comp Immunol. 2003 Jan;27(1):55-77 [PMID: 12477501]
  57. J Mol Biol. 1993 Dec 5;234(3):779-815 [PMID: 8254673]

MeSH Term

Amino Acid Sequence
Animals
Bass
Cloning, Molecular
Fish Diseases
Fish Proteins
Gene Expression Profiling
Gene Expression Regulation
Immunity, Mucosal
Immunoglobulins
Models, Molecular
Nodaviridae
Phylogeny
RNA Virus Infections
Sequence Alignment

Chemicals

Fish Proteins
Immunoglobulins

Word Cloud

Created with Highcharts 10.0.0IgTbassseaexpressionimmunemolecularcharacterizationsitumucosaltranscriptsresponsesDicentrarchuslabraxLtissuelocalizationhybridizationSeaconsistscontainsaminosignalsiteidentifieddifferentgenomicfoundmajorstructureorgansgutgillsfirstpossibleinvolvementinfectionnodaviruscellsspeciesBACKGROUND:ImmunoglobulinsIgsfundamentalcomponentsadaptivesystemvertebratesIgT/IgZisotypespecificTeleostspaperdescribeidentificationheavychainEuropeanmRNARESULTS:552aaAccessionNumberKM410929putative19acidslongpeptideonepotentialN-glycosylationC-regionfourCdomainscysteinetryptophanresiduesrequiredcorrectfoldingBasedrecentsequencinggenomefivecontigsbearingexonsunequivocallypertainingC2C3C4nonecorrespondedcompleteIgHlocussequenceshighlyfragmentedassembledregionsassignedscaffold3DmodelledusingcrystalmouseIggammatemplatethusshowingacidsequencesuitableexpectedtopologyreferredimmunoglobulin-likearchitecturebasalIgManalysed:importantshowedhighlevelsindicationMoreoverincreasedspleenhighlightingimportanceconfirmedpresencerevealeddifferentialalongintestinaltractposteriorintestinesuggestinghindgutrecruitmentalsogillfilamentsparallellamellaetimescatteredpositiveliverstronghepaticparenchymaCONCLUSIONS:conclusionperformedfullpointsImmunoglobulinT:hybridisationMucosalimmunityTissue

Similar Articles

Cited By