Evaluation of Nanobody Conjugates and Protein Fusions as Bioanalytical Reagents.

Virginia J Bruce, Brian R McNaughton
Author Information
  1. Virginia J Bruce: Department of Chemistry and ‡Department of Biochemistry & Molecular Biology, Colorado State University , Fort Collins, Colorado 80523, United States.
  2. Brian R McNaughton: Department of Chemistry and ‡Department of Biochemistry & Molecular Biology, Colorado State University , Fort Collins, Colorado 80523, United States. ORCID

Abstract

Enzyme-linked immunosorbent assay (ELISA), flow cytometry, and Western blot are common bioanalytical techniques. Successful execution traditionally requires the use of one or more commercially available antibody-small-molecule dyes or antibody-reporter protein conjugates that recognize relatively short peptide tags (<15 amino acids). However, the size of antibodies and their molecular complexity (by virtue of post-translational disulfide formation and glycosylation) typically require either expression in mammalian cells or purification from immunized mammals. The preparation and purification of chemical dye- or reporter protein-antibody conjugates is often complicated and expensive and not commonplace in academic laboratories. In response, researchers have developed comparatively simpler protein scaffolds for macromolecular recognition, which can be expressed with relative ease in E. coli and can be evolved to bind virtually any target. Nanobodies, a minimalist scaffold generated from camelid-derived heavy-chain IgGs, are one such example. A multitude of nanobodies have been evolved to recognize a diverse array of targets, including a short peptide. Here, this peptide tag (termed BC2T) and BC2 nanobody-dye conjugates or reporter protein fusions are evaluated in ELISA, flow cytometry, and Western blot experiments and compared to analogous experiments using commercially available antibody-conjugate/peptide tag pairs. Collectively, the utility and practicality of nanobody-based reagents in bioanalytical chemistry is demonstrated.

References

  1. Annu Rev Biochem. 2013;82:775-97 [PMID: 23495938]
  2. Protein Sci. 2010 Dec;19(12):2389-401 [PMID: 20945358]
  3. Chembiochem. 2016 Oct 17;17 (20):1892-1899 [PMID: 27477215]
  4. Immunobiology. 2012 Dec;217(12):1266-72 [PMID: 22884356]
  5. Methods Enzymol. 2000;328:430-44 [PMID: 11075358]
  6. N Am J Med Sci. 2014 Mar;6(3):160 [PMID: 24741558]
  7. Mol Cell Biol. 1985 Dec;5(12):3610-6 [PMID: 3915782]
  8. Sensors (Basel). 2009;9(6):4407-45 [PMID: 22408533]
  9. Talanta. 2016 Jan 15;147:523-30 [PMID: 26592642]
  10. Nat Biotechnol. 1997 Jun;15(6):553-7 [PMID: 9181578]
  11. Biotechnol J. 2011 Sep;6(9):1115-29 [PMID: 21786423]
  12. J Biochem Biophys Methods. 2001 Oct 30;49(1-3):455-65 [PMID: 11694294]
  13. Curr Opin Struct Biol. 2007 Aug;17(4):474-80 [PMID: 17728126]
  14. Methods Mol Biol. 2015;1286:83-95 [PMID: 25749948]
  15. Cell. 1984 Jul;37(3):767-78 [PMID: 6204768]
  16. ACS Chem Biol. 2012 Nov 16;7(11):1848-57 [PMID: 22894855]
  17. Chembiochem. 2016 Jan;17 (2):155-8 [PMID: 26556305]
  18. Proteins. 2004 Dec 1;57(4):820-8 [PMID: 15390265]
  19. Sci Rep. 2016 Jan 21;6:19211 [PMID: 26791954]
  20. Acta Pathol Microbiol Scand C. 1976 Jun;84(3):168-76 [PMID: 826112]
  21. Cytometry. 1981 Jul;2(1):1-13 [PMID: 7023887]
  22. Bull World Health Organ. 1976;54(2):129-39 [PMID: 798633]
  23. Biosens Bioelectron. 2012 Apr 15;34(1):12-24 [PMID: 22387037]
  24. PLoS One. 2016 Mar 07;11(3):e0151041 [PMID: 26950694]
  25. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5651-6 [PMID: 10318939]

Grants

  1. R01 GM107520/NIGMS NIH HHS

MeSH Term

Antibodies
Coloring Agents
Enzyme-Linked Immunosorbent Assay
Indicators and Reagents
Models, Molecular
Proteins
Single-Domain Antibodies

Chemicals

Antibodies
Coloring Agents
Indicators and Reagents
Proteins
Single-Domain Antibodies

Word Cloud

Created with Highcharts 10.0.0proteinconjugatespeptideELISAflowcytometryWesternblotbioanalyticalonecommerciallyavailablerecognizeshortpurificationreportercanevolvedtagexperimentsEnzyme-linkedimmunosorbentassaycommontechniquesSuccessfulexecutiontraditionallyrequiresuseantibody-small-moleculedyesantibody-reporterrelativelytags<15aminoacidsHoweversizeantibodiesmolecularcomplexityvirtuepost-translationaldisulfideformationglycosylationtypicallyrequireeitherexpressionmammaliancellsimmunizedmammalspreparationchemicaldye-protein-antibodyoftencomplicatedexpensivecommonplaceacademiclaboratoriesresponseresearchersdevelopedcomparativelysimplerscaffoldsmacromolecularrecognitionexpressedrelativeeaseEcolibindvirtuallytargetNanobodiesminimalistscaffoldgeneratedcamelid-derivedheavy-chainIgGsexamplemultitudenanobodiesdiversearraytargetsincludingtermedBC2TBC2nanobody-dyefusionsevaluatedcomparedanalogoususingantibody-conjugate/peptidepairsCollectivelyutilitypracticalitynanobody-basedreagentschemistrydemonstratedEvaluationNanobodyConjugatesProteinFusionsBioanalyticalReagents

Similar Articles

Cited By