Obesity paradox and mortality in adults with and without incident type 2 diabetes: a matched population-level cohort study.

Ellena Badrick, Matthew Sperrin, Iain E Buchan, Andrew G Renehan
Author Information
  1. Ellena Badrick: Farr Institute for Health Informatics Research Division of Informatics, Imaging and Data Science, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
  2. Matthew Sperrin: Farr Institute for Health Informatics Research Division of Informatics, Imaging and Data Science, School of Biological Sciences, Faculty of Biology , Medicine and Health, University of Manchester , Manchester , UK.
  3. Iain E Buchan: Farr Institute for Health Informatics Research Division of Informatics, Imaging and Data Science, School of Biological Sciences, Faculty of Biology , Medicine and Health, University of Manchester , Manchester , UK.
  4. Andrew G Renehan: Farr Institute for Health Informatics Research Division of Informatics, Imaging and Data Science, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK. ORCID

Abstract

OBJECTIVE: Among adults with type 2 diabetes (T2D), several (but not all) studies show that being overweight (body mass index (BMI): 25.0-29.9 kg/m) or obese I (BMI: 30.0-34.9 kg/m) near the time of diagnosis, is unexpectedly associated with reduced all-cause mortality compared with normal weight-the obesity paradox. We addressed whether this observation is causal (eg, a true protective effect); due to confounding (including effect modification); or due to selection ('collider') bias.
RESEARCH DESIGN AND METHODS: We performed a matched population-level cohort study using primary care records from Salford, UK (1995-2012) in 10 464 patients with incident T2D paired (1:3) with 31 020 individuals who never developed T2D. We estimated HRs for associations of BMI with all-cause mortality using Cox models, stratified by smoking status.
RESULTS: Median follow-up was 8.7 years. For never smokers, the hazard of all-cause mortality increased from 25 kg/m, in a linear manner, with increasing BMI in the T2D cohort (HR per 5 kg/m: 1.23, p<0.001) and in the non-diabetes cohort (HR per 5 kg/m: 1.34, p<0.001). In contrast, among ever smokers, BMI-mortality relationships were U-shaped in the T2D and non-diabetes cohorts. Evidence of the obesity paradox in ever smokers, with and without T2D, argued against a selection bias, but supported a contribution of effect modification by smoking (p=0.009). Results were stable to various sensitivity analyses.
CONCLUSIONS: In this cohort, the obesity paradox is mainly explained by smoking as an effect modifier. These findings indicate that the obesity paradox does not challenge standard weight management recommendations among T2D patients.

Keywords

References

  1. Diabet Med. 2006 May;23 (5):516-21 [PMID: 16681560]
  2. Obes Rev. 2015 Nov;16(11):1001-15 [PMID: 26252230]
  3. BMJ. 2016 May 04;353:i2156 [PMID: 27146380]
  4. Circulation. 2014 Dec 9;130(24):2143-51 [PMID: 25378546]
  5. Eur Heart J. 2015 Oct 21;36(40):2729-32 [PMID: 26341892]
  6. Lancet Diabetes Endocrinol. 2015 Dec;3(12 ):958-67 [PMID: 26388413]
  7. JAMA. 2012 Aug 8;308(6):581-90 [PMID: 22871870]
  8. Lancet. 2016 Aug 20;388(10046):776-86 [PMID: 27423262]
  9. Diabetologia. 2009 Jan;52(1):65-73 [PMID: 18985314]
  10. Diabetes Care. 2015 Jan;38 Suppl:S20-30 [PMID: 25537702]
  11. Curr Oncol Rep. 2016 Sep;18(9):56 [PMID: 27475805]
  12. Obesity (Silver Spring). 2015 Dec;23(12):2485-90 [PMID: 26421898]
  13. Epidemiology. 2016 Jul;27(4):525-30 [PMID: 27075676]
  14. Eur Heart J. 2015 Oct 21;36(40):2716-28 [PMID: 26242715]
  15. N Engl J Med. 2014 Apr 3;370(14):1362 [PMID: 24693911]
  16. Diabetologia. 2003 Aug;46(8):1063-70 [PMID: 12827246]
  17. N Engl J Med. 2014 Apr 3;370(14):1362-3 [PMID: 24693912]
  18. Diabetes Obes Metab. 2014 Apr;16(4):317-25 [PMID: 24118783]
  19. N Engl J Med. 2016 Sep 29;375(13):1253-60 [PMID: 27593504]
  20. Epidemiology. 2014 Jan;25(1):10-4 [PMID: 24270963]
  21. N Engl J Med. 2014 Apr 3;370(14):1361 [PMID: 24693909]
  22. Diabetes Care. 2013 Apr;36(4):887-93 [PMID: 23139375]
  23. Stat Med. 1991 Jul;10(7):1025-35 [PMID: 1652152]
  24. Biometrics. 1996 Mar;52(1):249-64 [PMID: 8934595]
  25. N Engl J Med. 2014 Jan 16;370(3):233-44 [PMID: 24428469]
  26. AMIA Annu Symp Proc. 2011;2011:1318-25 [PMID: 22195193]
  27. N Engl J Med. 2007 Aug 23;357(8):741-52 [PMID: 17715408]
  28. Arthritis Rheumatol. 2015 Jul;67(7):1711-7 [PMID: 25940140]
  29. Epidemiol Rev. 2007;29:115-28 [PMID: 17494056]
  30. Epidemiology. 2004 Sep;15(5):615-25 [PMID: 15308962]
  31. Ann Intern Med. 2015 May 5;162(9):610-8 [PMID: 25938991]
  32. N Engl J Med. 2014 Apr 3;370(14):1361-2 [PMID: 24693910]
  33. Heart. 2009 Mar;95(6):454-60 [PMID: 18697804]

Grants

  1. 17962/Cancer Research UK
  2. MC_PC_13042/Medical Research Council
  3. MR/K006665/1/Medical Research Council

Word Cloud

Created with Highcharts 10.0.0T2DparadoxcohortmortalityobesityeffectBMIall-causesmokingsmokersadultstype29 kg/mduemodificationselectionbiasmatchedpopulation-levelstudyusingpatientsincidentneverHRper5 kg/m:1p<0001non-diabetesamongeverwithoutOBJECTIVE:Amongdiabetesseveralstudiesshowoverweightbodymassindex:250-29obeseBMI:300-34neartimediagnosisunexpectedlyassociatedreducedcomparednormalweight-theaddressedwhetherobservationcausalegtrueprotectiveconfoundingincluding'collider'RESEARCHDESIGNANDMETHODS:performedprimarycarerecordsSalfordUK1995-201210 464paired1:331 020individualsdevelopedestimatedHRsassociationsCoxmodelsstratifiedstatusRESULTS:Medianfollow-up87 yearshazardincreased25 kg/mlinearmannerincreasing2334contrastBMI-mortalityrelationshipsU-shapedcohortsEvidencearguedsupportedcontributionp=0009ResultsstablevarioussensitivityanalysesCONCLUSIONS:mainlyexplainedmodifierfindingsindicatechallengestandardweightmanagementrecommendationsObesitydiabetes:BodyMassIndexMethodologicalIssuesMortalitySmoking

Similar Articles

Cited By