Toward developing recombinant gonadotropin-based hormone therapies for increasing fertility in the flatfish Senegalese sole.

François Chauvigné, Judith Ollé, Wendy González, Neil Duncan, Ignacio Giménez, Joan Cerdà
Author Information
  1. François Chauvigné: Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
  2. Judith Ollé: Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
  3. Wendy González: IRTA, Sant Carles de la Ràpita, Tarragona, Spain.
  4. Neil Duncan: IRTA, Sant Carles de la Ràpita, Tarragona, Spain.
  5. Ignacio Giménez: Rara Avis Biotec, S. L., Valencia, Spain.
  6. Joan Cerdà: Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain. ORCID

Abstract

Captive flatfishes, such as the Senegalese sole, typically produce very low volumes of sperm. This situation is particularly prevalent in the first generation (F1) of reared sole males, which limits the development of artificial fertilization methods and the implementation of selective breeding programs. In this study, we investigated whether combined treatments with homologous recombinant follicle-stimulating (rFsh) and luteinizing (rLh) hormones, produced in a mammalian host system, could stimulate spermatogenesis and enhance sperm production in Senegalese sole F1 males. In an initial autumn/winter experiment, weekly intramuscular injections with increasing doses of rFsh over 9 weeks resulted in the stimulation of gonad weight, androgen release, germ cell proliferation and entry into meiosis, and the expression of different spermatogenesis-related genes, whereas a subsequent single rLh injection potentiated spermatozoa differentiation. In a second late winter/spring trial corresponding to the sole's natural prespawning and spawning periods, we tested the effect of repeated rLh injections on the amount and quality of sperm produced by males previously treated with rFsh for 4, 6, 8 or 10 weeks. These latter results showed that the combination of rFsh and rLh treatments could increase sperm production up to 7 times, and slightly improve the motility of the spermatozoa, although a high variability in the response was found. However, sustained administration of rFsh during spawning markedly diminished Leydig cell survival and the steroidogenic potential of the testis. These data suggest that in vivo application of rFsh and rLh is effective at stimulating spermatogenesis and sperm production in Senegalese sole F1 males, setting the basis for the future establishment of recombinant gonadotropin-based hormone therapies to ameliorate reproductive dysfunctions of this species.

References

  1. Biochem Biophys Res Commun. 1999 Oct 14;264(1):230-4 [PMID: 10527870]
  2. Gen Comp Endocrinol. 2013 May 1;185:1-9 [PMID: 23360837]
  3. Reprod Biol Endocrinol. 2010 Aug 24;8:102 [PMID: 20735820]
  4. Comp Biochem Physiol A Mol Integr Physiol. 2016 Jan;191:35-43 [PMID: 26419696]
  5. Anim Reprod Sci. 2011 Jun;126(1-2):122-9 [PMID: 21571455]
  6. Recent Prog Horm Res. 1999;54:271-88; discussion 288-9 [PMID: 10548880]
  7. Nat Biotechnol. 1997 Jul;15(7):663-7 [PMID: 9219270]
  8. Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20972-7 [PMID: 19926858]
  9. J Histochem Cytochem. 2013 Sep;61(9):680-9 [PMID: 23776014]
  10. Biol Reprod. 2008 Nov;79(5):938-46 [PMID: 18685126]
  11. Comp Biochem Physiol A Mol Integr Physiol. 2007 Aug;147(4):885-92 [PMID: 17360211]
  12. J Endocrinol. 2007 Aug;194(2):441-8 [PMID: 17641291]
  13. J Cell Sci. 2012 May 15;125(Pt 10):2509-22 [PMID: 22357944]
  14. J Fish Biol. 2010 Jan;76(1):183-224 [PMID: 20738705]
  15. PLoS One. 2016 Sep 13;11(9):e0162344 [PMID: 27622546]
  16. Biol Reprod. 2012 Aug 09;87(2):35 [PMID: 22649073]
  17. Comp Biochem Physiol A Mol Integr Physiol. 2011 Feb;158(2):235-45 [PMID: 21112410]
  18. Gen Comp Endocrinol. 2008 May 1;156(3):470-81 [PMID: 18353326]
  19. Gen Comp Endocrinol. 2005 Feb;140(3):222-32 [PMID: 15639150]
  20. Biol Reprod. 2007 Apr;76(4):692-700 [PMID: 17192515]
  21. Gen Comp Endocrinol. 2015 Sep 15;221:75-85 [PMID: 25449660]
  22. J Mol Endocrinol. 2014 Oct;53(2):175-90 [PMID: 25024405]
  23. Gene. 2016 May 15;582(2):97-111 [PMID: 26861610]
  24. Gen Comp Endocrinol. 2008 Mar 1;156(1):154-63 [PMID: 18262184]
  25. Endocrinology. 2015 Oct;156(10):3804-17 [PMID: 26207345]
  26. Biol Reprod. 2001 Oct;65(4):1201-7 [PMID: 11566744]
  27. Biol Reprod. 2014 Jan 16;90(1):6 [PMID: 24258209]
  28. Gen Comp Endocrinol. 2017 Jan 15;241:41-49 [PMID: 26965950]
  29. Biol Reprod. 2010 Jun;82(6):1088-102 [PMID: 20200210]
  30. Dev Cell. 2003 May;4(5):687-97 [PMID: 12737804]
  31. Mol Endocrinol. 1993 May;7(5):643-50 [PMID: 8316250]
  32. Gen Comp Endocrinol. 2011 May 15;172(1):130-9 [PMID: 21310154]
  33. Endocrinology. 2006 Nov;147(11):5139-46 [PMID: 16887910]
  34. Biol Reprod. 1999 Oct;61(4):944-7 [PMID: 10491628]
  35. J Mol Endocrinol. 2009 Apr;42(4):291-303 [PMID: 19136570]
  36. Fish Physiol Biochem. 2010 Jun;36(2):273-81 [PMID: 20467863]
  37. Histol Histopathol. 2005 Oct;20(4):1179-89 [PMID: 16136501]
  38. PLoS One. 2013;8(1):e53302 [PMID: 23301058]
  39. J Mol Endocrinol. 2007 Feb;38(1-2):99-111 [PMID: 17242173]
  40. Cell Death Differ. 2010 Jul;17(7):1104-14 [PMID: 19960023]
  41. Reproduction. 2008 Apr;135(4):449-59 [PMID: 18367506]
  42. Gen Comp Endocrinol. 2003 Dec;134(3):244-54 [PMID: 14636631]
  43. Gen Comp Endocrinol. 2010 Jul 1;167(3):379-86 [PMID: 20064515]
  44. Endocrinology. 2010 May;151(5):2349-60 [PMID: 20308533]
  45. Gen Comp Endocrinol. 2010 Feb 1;165(3):390-411 [PMID: 19348807]
  46. Nat Biotechnol. 2005 May;23(5):567-75 [PMID: 15877075]
  47. Comp Biochem Physiol A Mol Integr Physiol. 2004 Mar;137(3):447-77 [PMID: 15123185]
  48. Gen Comp Endocrinol. 2010 Feb 1;165(3):412-37 [PMID: 19686749]
  49. Theriogenology. 2011 Jan 1;75(1):1-9 [PMID: 20833416]
  50. Endocrinology. 2003 Jan;144(1):138-45 [PMID: 12488339]
  51. Gen Comp Endocrinol. 2010 Feb 1;165(3):516-34 [PMID: 19318108]
  52. Reproduction. 2010 Jan;139(1):177-84 [PMID: 19846485]
  53. Biol Reprod. 2011 Jun;84(6):1171-81 [PMID: 21293031]
  54. Gen Comp Endocrinol. 2006 Jul;147(3):343-51 [PMID: 16574114]
  55. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1427-32 [PMID: 24474769]

MeSH Term

Androgens
Animals
Female
Fertility
Flatfishes
Follicle Stimulating Hormone
Leydig Cells
Luteinizing Hormone
Male
Meiosis
Ovarian Follicle
Recombinant Proteins
Reproduction
Spermatogenesis
Testis

Chemicals

Androgens
Recombinant Proteins
Luteinizing Hormone
Follicle Stimulating Hormone

Word Cloud

Created with Highcharts 10.0.0rFshsolespermrLhSenegalesemalesF1recombinantproductiontreatmentsproducedspermatogenesisinjectionsincreasingweekscellspermatozoaspawninggonadotropin-basedhormonetherapiesCaptiveflatfishestypicallyproducelowvolumessituationparticularlyprevalentfirstgenerationrearedlimitsdevelopmentartificialfertilizationmethodsimplementationselectivebreedingprogramsstudyinvestigatedwhethercombinedhomologousfollicle-stimulatingluteinizinghormonesmammalianhostsystemstimulateenhanceinitialautumn/winterexperimentweeklyintramusculardoses9resultedstimulationgonadweightandrogenreleasegermproliferationentrymeiosisexpressiondifferentspermatogenesis-relatedgeneswhereassubsequentsingleinjectionpotentiateddifferentiationsecondlatewinter/springtrialcorrespondingsole'snaturalprespawningperiodstestedeffectrepeatedamountqualitypreviouslytreated46810latterresultsshowedcombinationincrease7timesslightlyimprovemotilityalthoughhighvariabilityresponsefoundHoweversustainedadministrationmarkedlydiminishedLeydigsurvivalsteroidogenicpotentialtestisdatasuggestvivoapplicationeffectivestimulatingsettingbasisfutureestablishmentamelioratereproductivedysfunctionsspeciesTowarddevelopingfertilityflatfish

Similar Articles

Cited By