Vocal Tract Images Reveal Neural Representations of Sensorimotor Transformation During Speech Imitation.

Daniel Carey, Marc E Miquel, Bronwen G Evans, Patti Adank, Carolyn McGettigan
Author Information
  1. Daniel Carey: Department of Psychology, Royal Holloway, University of London, London TW20 0EX, UK.
  2. Marc E Miquel: William Harvey Research Institute, Queen Mary, University of London, London EC1M 6BQ, UK.
  3. Bronwen G Evans: Department of Speech, Hearing & Phonetic Sciences, University College London, London WC1E 6BT, UK.
  4. Patti Adank: Department of Speech, Hearing & Phonetic Sciences, University College London, London WC1E 6BT, UK.
  5. Carolyn McGettigan: Department of Psychology, Royal Holloway, University of London, London TW20 0EX, UK.

Abstract

Imitating speech necessitates the transformation from sensory targets to vocal tract motor output, yet little is known about the representational basis of this process in the human brain. Here, we address this question by using real-time MR imaging (rtMRI) of the vocal tract and functional MRI (fMRI) of the brain in a speech imitation paradigm. Participants trained on imitating a native vowel and a similar nonnative vowel that required lip rounding. Later, participants imitated these vowels and an untrained vowel pair during separate fMRI and rtMRI runs. Univariate fMRI analyses revealed that regions including left inferior frontal gyrus were more active during sensorimotor transformation (ST) and production of nonnative vowels, compared with native vowels; further, ST for nonnative vowels activated somatomotor cortex bilaterally, compared with ST of native vowels. Using test representational similarity analysis (RSA) models constructed from participants' vocal tract images and from stimulus formant distances, we found that RSA searchlight analyses of fMRI data showed either type of model could be represented in somatomotor, temporal, cerebellar, and hippocampal neural activation patterns during ST. We thus provide the first evidence of widespread and robust cortical and subcortical neural representation of vocal tract and/or formant parameters, during prearticulatory ST.

Keywords

References

  1. J Acoust Soc Am. 2015 Aug;138(2):817-32 [PMID: 26328698]
  2. Neuropsychologia. 2017 Apr;98 :201-211 [PMID: 27288115]
  3. Nature. 2014 Mar 6;507(7490):94-8 [PMID: 24429520]
  4. J Neurophysiol. 2011 Jul;106(1):470-8 [PMID: 21562201]
  5. Cereb Cortex. 2014 Sep;24(9):2350-61 [PMID: 23585519]
  6. J Cogn Neurosci. 2010 Jul;22(7):1504-29 [PMID: 19583476]
  7. Hum Brain Mapp. 2003 Jul;19(3):170-82 [PMID: 12811733]
  8. J Neurosci. 2014 Sep 24;34(39):12963-72 [PMID: 25253845]
  9. Trends Cogn Sci. 2013 Aug;17(8):401-12 [PMID: 23876494]
  10. J Neurophysiol. 2009 May;101(5):2725-32 [PMID: 19225172]
  11. Curr Biol. 2011 Aug 23;21(16):1403-7 [PMID: 21820308]
  12. Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):1017-22 [PMID: 11805340]
  13. APSIPA Trans Signal Inf Process. 2016;5: [PMID: 27833745]
  14. Neuroimage. 2016 Nov 1;141:174-190 [PMID: 27421186]
  15. J Neurosci. 2015 Nov 11;35(45):15015-25 [PMID: 26558773]
  16. Psychol Rev. 1967 Nov;74(6):431-61 [PMID: 4170865]
  17. J Speech Lang Hear Res. 2014 Aug;57(4):1243-50 [PMID: 24686494]
  18. PLoS One. 2016 Mar 28;11(3):e0151327 [PMID: 27019106]
  19. Front Hum Neurosci. 2014 Jan 31;8:24 [PMID: 24550807]
  20. Proc Natl Acad Sci U S A. 2014 May 13;111(19):7126-31 [PMID: 24778251]
  21. Proc Biol Sci. 2014 Sep 22;281(1791):20141000 [PMID: 25100695]
  22. Elife. 2016 Mar 04;5:null [PMID: 26943778]
  23. Curr Biol. 2009 Mar 10;19(5):381-5 [PMID: 19217297]
  24. Cereb Cortex. 2015 Dec;25(12):4772-88 [PMID: 26157026]
  25. Neuroimage. 2009 Jun;46(2):549-57 [PMID: 19385020]
  26. Neuroimage. 2006 Oct 15;33(1):316-25 [PMID: 16919478]
  27. Hippocampus. 2008;18(6):536-41 [PMID: 18446830]
  28. Neuroimage. 2004 Feb;21(2):494-506 [PMID: 14980552]
  29. Brain Lang. 2008 Nov;107(2):102-13 [PMID: 18294683]
  30. Hum Brain Mapp. 2012 Oct;33(10):2306-21 [PMID: 21826760]
  31. Magn Reson Med. 2011 May;65(5):1247-52 [PMID: 21360741]
  32. Front Neurosci. 2014 Sep 30;8:306 [PMID: 25324713]
  33. Science. 2014 Feb 28;343(6174):1006-10 [PMID: 24482117]
  34. J Neurophysiol. 2014 Aug 15;112(4):792-801 [PMID: 24805076]
  35. Nature. 2013 Mar 21;495(7441):327-32 [PMID: 23426266]
  36. Nat Rev Neurosci. 2007 May;8(5):393-402 [PMID: 17431404]
  37. J Neurolinguistics. 2012 Sep 1;25(5):408-422 [PMID: 22711978]
  38. Cereb Cortex. 2008 Apr;18(4):837-45 [PMID: 17652461]
  39. J Neurosci. 2013 Oct 9;33(41):16110-6 [PMID: 24107944]
  40. Brain Lang. 2016 Jul 19;:null [PMID: 27450996]
  41. Front Syst Neurosci. 2008 Nov 24;2:4 [PMID: 19104670]
  42. J Cogn Neurosci. 2009 Apr;21(4):803-20 [PMID: 18578598]
  43. Brain Lang. 2010 Apr;113(1):39-44 [PMID: 20171727]
  44. J Cogn Neurosci. 2011 Apr;23(4):961-77 [PMID: 20350182]
  45. Magn Reson Med. 2013 Feb;69(2):477-85 [PMID: 22498911]
  46. J Commun Disord. 2006 Sep-Oct;39(5):350-65 [PMID: 16887139]
  47. Hum Brain Mapp. 2008 Nov;29(11):1231-42 [PMID: 17948887]
  48. J Cogn Neurosci. 2015 Apr;27(4):819-31 [PMID: 25313656]
  49. Magn Reson Med. 2013 Sep;70(3):865-74 [PMID: 23023822]
  50. Neuron. 2001 Sep 13;31(5):865-73 [PMID: 11567623]
  51. Phys Med. 2014 Sep;30(6):604-18 [PMID: 24880679]
  52. J Magn Reson Imaging. 2016 Jan;43(1):28-44 [PMID: 26174802]
  53. Brain. 2000 Dec;123 Pt 12:2400-6 [PMID: 11099443]
  54. J Neurophysiol. 2008 Oct;100(4):1800-12 [PMID: 18684903]
  55. J Neurosci. 2003 Apr 15;23(8):3423-31 [PMID: 12716950]
  56. J Neurosci. 2009 Aug 5;29(31):9819-25 [PMID: 19657034]
  57. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7865-70 [PMID: 16682637]
  58. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8 [PMID: 16537458]
  59. J Neurosci. 2015 Jan 14;35(2):634-42 [PMID: 25589757]
  60. Cereb Cortex. 2017 Jan 1;27(1):265-278 [PMID: 28069761]
  61. J Neurosci. 2014 Jun 25;34(26):8728-40 [PMID: 24966373]
  62. Nat Rev Neurosci. 2012 Jan 05;13(2):135-45 [PMID: 22218206]

MeSH Term

Adult
Brain Mapping
Female
Humans
Image Processing, Computer-Assisted
Larynx
Lip
Magnetic Resonance Imaging
Male
Oxygen
Palate, Soft
Sensorimotor Cortex
Speech
Speech Acoustics
Tongue
Young Adult

Chemicals

Oxygen

Word Cloud

Created with Highcharts 10.0.0vowelsSTvocaltractfMRIspeechtransformationrtMRInativevowelnonnativerepresentationalbrainanalysessensorimotorcomparedsomatomotorRSAformantneuralImitatingnecessitatessensorytargetsmotoroutputyetlittleknownbasisprocesshumanaddressquestionusingreal-timeMRimagingfunctionalMRIimitationparadigmParticipantstrainedimitatingsimilarrequiredliproundingLaterparticipantsimitateduntrainedpairseparaterunsUnivariaterevealedregionsincludingleftinferiorfrontalgyrusactiveproductionactivatedcortexbilaterallyUsingtestsimilarityanalysismodelsconstructedparticipants'imagesstimulusdistancesfoundsearchlightdatashowedeithertypemodelrepresentedtemporalcerebellarhippocampalactivationpatternsthusprovidefirstevidencewidespreadrobustcorticalsubcorticalrepresentationand/orparametersprearticulatoryVocalTractImagesRevealNeuralRepresentationsSensorimotorTransformationSpeechImitationFMRIlearning

Similar Articles

Cited By