Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System.

Eleonora Arena, Paolo Arena, Roland Strauss, Luca Patané
Author Information
  1. Eleonora Arena: Dipartimento di Ingegneria Elettrica, Elettronica, e Informatica, University of Catania Catania, Italy.
  2. Paolo Arena: Dipartimento di Ingegneria Elettrica, Elettronica, e Informatica, University of CataniaCatania, Italy; National Institute of Biostructures and BiosystemsRome, Italy.
  3. Roland Strauss: Institut für Zoologie III (Neurobiologie), University of Mainz Mainz, Germany.
  4. Luca Patané: Dipartimento di Ingegneria Elettrica, Elettronica, e Informatica, University of Catania Catania, Italy.

Abstract

In nature, insects show impressive adaptation and learning capabilities. The proposed computational model takes inspiration from specific structures of the insect brain: after proposing key hypotheses on the direct involvement of the mushroom bodies (MBs) and on their neural organization, we developed a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is a nonlinear control system based on spiking neurons. MBs are modeled as a nonlinear recurrent spiking neural network (SNN) with novel characteristics, able to memorize time evolutions of key parameters of the neural motor controller, so that existing motor primitives can be improved. The adopted control scheme enables the structure to efficiently cope with goal-oriented behavioral motor tasks. Here, a six-legged structure, showing a steady-state exponentially stable locomotion pattern, is exposed to the need of learning new motor skills: moving through the environment, the structure is able to modulate motor commands and implements an obstacle climbing procedure. Experimental results on a simulated hexapod robot are reported; they are obtained in a dynamic simulation environment and the robot mimicks the structures of .

Keywords

References

  1. Science. 2001 Nov 16;294(5546):1543-7 [PMID: 11711680]
  2. Annu Rev Neurosci. 1996;19:379-404 [PMID: 8833448]
  3. Nat Neurosci. 2007 Dec;10 (12 ):1578-86 [PMID: 17982450]
  4. Learn Mem. 2003 May-Jun;10(3):217-25 [PMID: 12773586]
  5. Curr Opin Neurobiol. 2006 Dec;16(6):679-85 [PMID: 17084613]
  6. Nature. 1962 Feb 17;193:697-8 [PMID: 14449018]
  7. Curr Opin Neurobiol. 2002 Dec;12(6):633-8 [PMID: 12490252]
  8. Learn Mem. 2004 Mar-Apr;11(2):127-36 [PMID: 15054127]
  9. J Neurosci. 2013 Mar 20;33(12 ):5175-81 [PMID: 23516283]
  10. Front Neurorobot. 2014 Jan 29;8:3 [PMID: 24523694]
  11. Acta Biol Hung. 2004;55(1-4):31-7 [PMID: 15270216]
  12. Neural Netw. 2013 May;41:202-11 [PMID: 23246431]
  13. Learn Mem. 2001 Mar-Apr;8(2):53-62 [PMID: 11274250]
  14. Neuron. 2005 Nov 23;48(4):661-73 [PMID: 16301181]
  15. Science. 1986 May 16;232(4752):863-5 [PMID: 17755969]
  16. J Neurosci. 2003 Nov 19;23(33):10495-502 [PMID: 14627633]
  17. Neural Netw. 2009 Jul-Aug;22(5-6):801-11 [PMID: 19596552]
  18. Neuron. 2011 Nov 3;72(3):443-54 [PMID: 22078504]
  19. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 Mar;190(3):173-83 [PMID: 14735308]
  20. Curr Biol. 2009 Nov 17;19(21):R995-R1008 [PMID: 19922859]
  21. Neural Netw. 2012 Aug;32:35-45 [PMID: 22386503]
  22. J Comput Neurosci. 2012 Apr;32(2):197-212 [PMID: 21698405]
  23. J Comput Neurosci. 2003 Sep-Oct;15(2):271-81 [PMID: 14512751]
  24. Nat Neurosci. 2014 Apr;17 (4):559-68 [PMID: 24561998]
  25. Biol Cybern. 2008 Aug;99(2):89-103 [PMID: 18607623]
  26. Curr Opin Neurobiol. 2013 Jun;23(3):324-9 [PMID: 23391527]
  27. Biol Cybern. 2005 Dec;93(6):436-46 [PMID: 16320081]
  28. Neural Netw. 1998 Oct;11(7-8):1435-1447 [PMID: 12662760]
  29. Nature. 1999 Aug 19;400(6746):753-6 [PMID: 10466722]
  30. Curr Biol. 2010 Apr 13;20(7):663-8 [PMID: 20346674]
  31. Curr Biol. 2005 Aug 23;15(16):1473-8 [PMID: 16111941]
  32. Learn Mem. 2000 Mar-Apr;7(2):104-15 [PMID: 10753977]
  33. Curr Biol. 2009 Aug 25;19(16):1351-5 [PMID: 19576773]
  34. Behav Brain Sci. 2010 Aug;33(4):245-66; discussion 266-313 [PMID: 20964882]
  35. IEEE Trans Syst Man Cybern B Cybern. 1996;26(3):421-36 [PMID: 18263044]
  36. Front Neurorobot. 2015 Sep 25;9:10 [PMID: 26441629]
  37. Neural Comput. 2002 Nov;14(11):2531-60 [PMID: 12433288]
  38. Behav Cogn Neurosci Rev. 2006 Mar;5(1):24-40 [PMID: 16816091]

Word Cloud

Created with Highcharts 10.0.0motorlearningneuralinsectspikingstructureproposedmodelstructureskeymushroombodiesMBsnewnonlinearcontrolablegoal-orientedenvironmentrobotnatureinsectsshowimpressiveadaptationcapabilitiescomputationaltakesinspirationspecificbrain:proposinghypothesesdirectinvolvementorganizationdevelopedarchitectureappliedinsect-likewalkingrobotssystembasedneuronsmodeledrecurrentnetworkSNNnovelcharacteristicsmemorizetimeevolutionsparameterscontrollerexistingprimitivescanimprovedadoptedschemeenablesefficientlycopebehavioraltaskssix-leggedshowingsteady-stateexponentiallystablelocomotionpatternexposedneedskills:movingmodulatecommandsimplementsobstacleclimbingprocedureExperimentalresultssimulatedhexapodreportedobtaineddynamicsimulationmimicksMotor-SkillLearningInsectInspiredNeuro-ComputationalControlSystembehaviorbraincontrollers

Similar Articles

Cited By