Transcriptome and functional analysis reveals hybrid vigor for oil biosynthesis in oil palm.

Jingjing Jin, Yanwei Sun, Jing Qu, Rahmad Syah, Chin-Huat Lim, Yuzer Alfiko, Nur Estya Bte Rahman, Antonius Suwanto, Genhua Yue, Limsoon Wong, Nam-Hai Chua, Jian Ye
Author Information
  1. Jingjing Jin: Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, NUS, Singapore.
  2. Yanwei Sun: Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, NUS, Singapore.
  3. Jing Qu: Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, NUS, Singapore.
  4. Rahmad Syah: R&D Department, Wilmar International Plantation, Palembang, Indonesia Biotech Lab, Wilmar International, Jakarta, Indonesia.
  5. Chin-Huat Lim: R&D Department, Wilmar International Plantation, Palembang, Indonesia Biotech Lab, Wilmar International, Jakarta, Indonesia.
  6. Yuzer Alfiko: R&D Department, Wilmar International Plantation, Palembang, Indonesia Biotech Lab, Wilmar International, Jakarta, Indonesia.
  7. Nur Estya Bte Rahman: Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, NUS, Singapore.
  8. Antonius Suwanto: R&D Department, Wilmar International Plantation, Palembang, Indonesia Biotech Lab, Wilmar International, Jakarta, Indonesia.
  9. Genhua Yue: Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, NUS, Singapore.
  10. Limsoon Wong: School of Computing, National University of Singapore, 117417, NUS, Singapore. ORCID
  11. Nam-Hai Chua: Laboratory of Plant Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA.
  12. Jian Ye: Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, NUS, Singapore. jianye@im.ac.cn. ORCID

Abstract

Oil palm is the most productive oil crop in the world and composes 36% of the world production. However, the molecular mechanisms of hybrids vigor (or heterosis) between Dura, Pisifera and their hybrid progeny Tenera has not yet been well understood. Here we compared the temporal and spatial compositions of lipids and transcriptomes for two oil yielding organs mesocarp and endosperm from Dura, Pisifera and Tenera. Multiple lipid biosynthesis pathways are highly enriched in all non-additive expression pattern in endosperm, while cytokinine biosynthesis and cell cycle pathways are highly enriched both in endosperm and mesocarp. Compared with parental palms, the high oil content in Tenera was associated with much higher transcript levels of EgWRI1, homolog of Arabidopsis thaliana WRINKLED1. Among 338 identified genes in lipid synthesis, 207 (61%) has been identified to contain the WRI1 specific binding AW motif. We further functionally identified EgWRI1-1, one of three EgWRI1 orthologs, by genetic complementation of the Arabidopsis wri1 mutant. Ectopic expression of EgWRI1-1 in plant produced dramatically increased seed mass and oil content, with oil profile changed. Our findings provide an explanation for EgWRI1 as an important gene contributing hybrid vigor in lipid biosynthesis in oil palm.

References

  1. Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12527-32 [PMID: 21709233]
  2. Plant Physiol. 2013 Jul;162(3):1337-58 [PMID: 23735505]
  3. Genetics. 2008 Jul;179(3):1275-83 [PMID: 18562640]
  4. PLoS One. 2013 Jul 26;8(7):e68887 [PMID: 23922666]
  5. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  6. J Genet. 2010 Aug;89(2):135-45 [PMID: 20861564]
  7. Trends Genet. 2007 Feb;23(2):60-6 [PMID: 17188398]
  8. Nat Genet. 2010 May;42(5):459-63 [PMID: 20348958]
  9. PLoS One. 2015 Jan 21;10(1):e0114827 [PMID: 25607952]
  10. Sci Rep. 2016 Mar 01;6:21124 [PMID: 26928435]
  11. Annu Rev Plant Biol. 2013;64:71-88 [PMID: 23394499]
  12. BMC Genomics. 2013 Jan 16;14:19 [PMID: 23324257]
  13. Plant Cell. 2014 Dec;26(12):4991-5008 [PMID: 25490915]
  14. Nat Rev Genet. 2013 Jul;14(7):471-82 [PMID: 23752794]
  15. Plant Physiol. 2015 Nov;169(3):1836-47 [PMID: 26419778]
  16. Theor Appl Genet. 2008 Nov;117(7):1031-40 [PMID: 18754099]
  17. Sci Rep. 2016 Apr 25;6:24984 [PMID: 27108962]
  18. Genome Res. 2012 Dec;22(12):2445-54 [PMID: 23086286]
  19. BMC Plant Biol. 2009 Aug 26;9:114 [PMID: 19706196]
  20. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  21. Biotechnol Biofuels. 2012 Feb 29;5(1):10 [PMID: 22377043]
  22. J Hered. 2007 Mar-Apr;98(2):136-41 [PMID: 17208934]
  23. Plant Cell. 2007 Aug;19(8):2391-402 [PMID: 17693532]
  24. Curr Opin Plant Biol. 2013 May;16(2):221-7 [PMID: 23587937]
  25. Genetics. 2008 Jul;179(3):1547-58 [PMID: 18562665]
  26. Plant Physiol. 2012 Oct;160(2):738-48 [PMID: 22837356]
  27. Plant Physiol. 2011 Jun;156(2):564-84 [PMID: 21487046]
  28. Plant Biotechnol J. 2009 Dec;7(9):964-76 [PMID: 19906247]
  29. BMC Plant Biol. 2008 Nov 11;8:114 [PMID: 19000321]
  30. Theor Appl Genet. 2012 Oct;125(6):1087-96 [PMID: 22918662]
  31. BMC Plant Biol. 2015 Aug 08;15:192 [PMID: 26253704]
  32. Genetics. 2008 Nov;180(3):1707-24 [PMID: 18791260]
  33. DNA Res. 2016 Dec;23 (6):527-533 [PMID: 27426468]
  34. PLoS Pathog. 2015 Oct 02;11(10):e1005196 [PMID: 26431425]
  35. PLoS One. 2011;6(7):e21645 [PMID: 21747942]
  36. Phytochemistry. 2006 May;67(9):904-15 [PMID: 16600316]
  37. J Virol. 2007 Jun;81(12):6690-9 [PMID: 17344304]
  38. Plant J. 2009 Dec;60(6):933-47 [PMID: 19719479]
  39. Nature. 2013 Aug 15;500(7462):335-9 [PMID: 23883927]
  40. BMC Genomics. 2015 Aug 29;16:651 [PMID: 26318484]
  41. Mol Plant. 2010 Nov;3(6):1012-25 [PMID: 20729474]
  42. Int J Genomics. 2015;2015:230985 [PMID: 26448924]
  43. Sci Rep. 2015 Feb 04;5:8232 [PMID: 25648560]
  44. Proc Natl Acad Sci U S A. 2009 May 12;106(19):7695-701 [PMID: 19372371]
  45. Nature. 2013 Aug 15;500(7462):340-4 [PMID: 23883930]
  46. Genomics. 2013 May;101(5):306-12 [PMID: 23474141]
  47. Plant J. 2009 Nov;60(3):476-87 [PMID: 19594710]
  48. J Integr Plant Biol. 2014 Jun;56(6):582-93 [PMID: 24393360]
  49. Proteomics. 2011 Apr;11(8):1462-72 [PMID: 21365753]

MeSH Term

Arabidopsis
Arabidopsis Proteins
Arecaceae
Biosynthetic Pathways
Chimera
Gene Expression Profiling
Genetic Complementation Test
Hybrid Vigor
Lipids
Palm Oil
Transcription Factors

Chemicals

Arabidopsis Proteins
Lipids
Transcription Factors
WRINKLED1 protein, Arabidopsis
Palm Oil

Word Cloud

Created with Highcharts 10.0.0oilbiosynthesispalmvigorhybridTeneraendospermlipidEgWRI1identifiedworldDuraPisiferamesocarppathwayshighlyenrichedexpressioncontentArabidopsisEgWRI1-1Oilproductivecropcomposes36%productionHowevermolecularmechanismshybridsheterosisprogenyyetwellunderstoodcomparedtemporalspatialcompositionslipidstranscriptomestwoyieldingorgansMultiplenon-additivepatterncytokininecellcycleComparedparentalpalmshighassociatedmuchhighertranscriptlevelshomologthalianaWRINKLED1Among338genessynthesis20761%containWRI1specificbindingAWmotiffunctionallyonethreeorthologsgeneticcomplementationwri1mutantEctopicplantproduceddramaticallyincreasedseedmassprofilechangedfindingsprovideexplanationimportantgenecontributingTranscriptomefunctionalanalysisreveals

Similar Articles

Cited By