Evolutionary dynamics on any population structure.

Benjamin Allen, Gabor Lippner, Yu-Ting Chen, Babak Fotouhi, Naghmeh Momeni, Shing-Tung Yau, Martin A Nowak
Author Information
  1. Benjamin Allen: Department of Mathematics, Emmanuel College, Boston, Massachusetts, USA.
  2. Gabor Lippner: Center for Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts, USA.
  3. Yu-Ting Chen: Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, USA.
  4. Babak Fotouhi: Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, USA.
  5. Naghmeh Momeni: Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, USA.
  6. Shing-Tung Yau: Center for Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts, USA.
  7. Martin A Nowak: Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, USA.

Abstract

Evolution occurs in populations of reproducing individuals. The structure of a population can affect which traits evolve. Understanding evolutionary game dynamics in structured populations remains difficult. Mathematical results are known for special structures in which all individuals have the same number of neighbours. The general case, in which the number of neighbours can vary, has remained open. For arbitrary selection intensity, the problem is in a computational complexity class that suggests there is no efficient algorithm. Whether a simple solution for weak selection exists has remained unanswered. Here we provide a solution for weak selection that applies to any graph or network. Our method relies on calculating the coalescence times of random walks. We evaluate large numbers of diverse population structures for their propensity to favour cooperation. We study how small changes in population structure-graph surgery-affect evolutionary outcomes. We find that cooperation flourishes most in societies that are based on strong pairwise ties.

References

  1. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jun;63(6 Pt 2):066123 [PMID: 11415189]
  2. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  3. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  4. Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):19-30 [PMID: 20008382]
  5. Nat Commun. 2014 Mar 06;5:3409 [PMID: 24598979]
  6. Nature. 2007 May 24;447(7143):469-72 [PMID: 17522682]
  7. PLoS Comput Biol. 2010 Nov 04;6(11):e1000968 [PMID: 21079667]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 2):026107 [PMID: 11863587]
  9. Phys Rev Lett. 2005 Aug 26;95(9):098104 [PMID: 16197256]
  10. Folia Primatol (Basel). 1972;18(3):196-223 [PMID: 4631133]
  11. PLoS Comput Biol. 2015 Feb 26;11(2):e1004108 [PMID: 25719560]
  12. J Theor Biol. 2011 Jan 21;269(1):224-33 [PMID: 21044635]
  13. Oecologia. 2007 Feb;151(1):140-9 [PMID: 16964497]
  14. N Engl J Med. 2007 Jul 26;357(4):370-9 [PMID: 17652652]
  15. J Theor Biol. 2009 Aug 7;259(3):570-81 [PMID: 19358858]
  16. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14966-9 [PMID: 14657359]
  17. J Theor Biol. 2006 Mar 21;239(2):195-202 [PMID: 16242728]
  18. PLoS One. 2008 Apr 02;3(4):e1892 [PMID: 18382673]
  19. PLoS Comput Biol. 2014 Apr 24;10(4):e1003567 [PMID: 24762474]
  20. Genet Res. 1991 Oct;58(2):167-75 [PMID: 1765264]
  21. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  22. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15636-41 [PMID: 26644569]
  23. J Theor Biol. 2008 Jun 21;252(4):694-710 [PMID: 18371985]
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 2A):036123 [PMID: 11909181]
  25. Nature. 2008 Jul 10;454(7201):213-6 [PMID: 18615084]
  26. J Theor Biol. 2012 Apr 21;299:1-8 [PMID: 22281519]
  27. J Theor Biol. 2012 Apr 21;299:97-105 [PMID: 21473871]
  28. Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17093-8 [PMID: 25404308]
  29. Phys Rev Lett. 2007 Mar 9;98(10):108106 [PMID: 17358573]
  30. Elife. 2013 Dec 17;2:e01169 [PMID: 24347543]
  31. Nature. 2009 May 14;459(7244):253-6 [PMID: 19349960]

MeSH Term

Algorithms
Animals
Biological Evolution
Computer Graphics
Cooperative Behavior
Ecosystem
Game Theory
Genetics, Population
Humans
Models, Biological
Selection, Genetic
Sociology

Word Cloud

Created with Highcharts 10.0.0populationselectionpopulationsindividualsstructurecanevolutionarydynamicsstructuresnumberneighboursremainedsolutionweakcooperationEvolutionoccursreproducingaffecttraitsevolveUnderstandinggamestructuredremainsdifficultMathematicalresultsknownspecialgeneralcasevaryopenarbitraryintensityproblemcomputationalcomplexityclasssuggestsefficientalgorithmWhethersimpleexistsunansweredprovideappliesgraphnetworkmethodreliescalculatingcoalescencetimesrandomwalksevaluatelargenumbersdiversepropensityfavourstudysmallchangesstructure-graphsurgery-affectoutcomesfindflourishessocietiesbasedstrongpairwisetiesEvolutionary

Similar Articles

Cited By (126)