In silico-based vaccine design against Ebola virus glycoprotein.

Raju Dash, Rasel Das, Md Junaid, Md Forhad Chowdhury Akash, Ashekul Islam, Sm Zahid Hosen
Author Information
  1. Raju Dash: Molecular Modeling and Drug Design Laboratory (MMDDL), Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chittagong, Bangladesh.
  2. Rasel Das: Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur, Malaysia.
  3. Md Junaid: Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh.
  4. Md Forhad Chowdhury Akash: Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh.
  5. Ashekul Islam: Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh.
  6. Sm Zahid Hosen: Molecular Modeling and Drug Design Laboratory (MMDDL), Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chittagong, Bangladesh.

Abstract

Ebola virus (EBOV) is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154-162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY) interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV.

Keywords

References

  1. Nat Rev Drug Discov. 2007 May;6(5):404-14 [PMID: 17473845]
  2. Virol J. 2010 Nov 30;7:351 [PMID: 21118546]
  3. Viral Immunol. 2015 Feb;28(1):3-9 [PMID: 25354393]
  4. J Virol. 1985 Sep;55(3):836-9 [PMID: 2991600]
  5. J Phys Chem B. 2009 Feb 26;113(8):2234-46 [PMID: 19146384]
  6. Nat Protoc. 2009;4(3):363-71 [PMID: 19247286]
  7. J Infect Dis. 2016 Oct 15;214(suppl 3):S326-S332 [PMID: 27493239]
  8. J Med Chem. 2016 Apr 28;59(8):3886-905 [PMID: 27010810]
  9. Biomed Res Int. 2015;2015:483150 [PMID: 25961021]
  10. PLoS Pathog. 2013;9(10):e1003677 [PMID: 24146620]
  11. Pharmacotherapy. 2015 Jan;35(1):43-53 [PMID: 25630412]
  12. Biophys J. 2011 Nov 16;101(10):2525-34 [PMID: 22098752]
  13. Nat Protoc. 2015 Jun;10(6):845-58 [PMID: 25950237]
  14. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W288-93 [PMID: 22581768]
  15. Lancet. 2015 Aug 29;386(9996):857-66 [PMID: 26248676]
  16. Proteins. 2008 Apr;71(1):261-77 [PMID: 17932912]
  17. Curr Comput Aided Drug Des. 2010 Sep;6(3):207-22 [PMID: 20412039]
  18. Proc Natl Acad Sci U S A. 1986 Jan;83(2):226-30 [PMID: 2417241]
  19. Biophys Chem. 2006 Jan 20;119(2):146-57 [PMID: 16129550]
  20. Interdiscip Sci. 2016 Dec;8(4):403-411 [PMID: 26275670]
  21. Nature. 2008 Jul 10;454(7201):177-82 [PMID: 18615077]
  22. In Silico Pharmacol. 2015 Dec;3(1):7 [PMID: 26820892]
  23. Arch Virol. 2001 Oct;146(10):2021-7 [PMID: 11722021]
  24. J Comput Chem. 2010 Mar;31(4):671-90 [PMID: 19575467]
  25. Curr Opin Struct Biol. 2002 Aug;12(4):431-40 [PMID: 12163064]
  26. J Virol. 2015 Nov;89(21):10982-92 [PMID: 26311869]
  27. Sci Rep. 2016 May 16;6:25856 [PMID: 27181584]
  28. Science. 1992 Feb 21;255(5047):959-65 [PMID: 1546293]
  29. J Virol. 2011 Sep;85(17):8502-13 [PMID: 21697477]
  30. Drug Discov Today. 2009 Apr;14(7-8):394-400 [PMID: 19185058]
  31. BMC Bioinformatics. 2005 May 31;6:132 [PMID: 15927070]
  32. J Chem Theory Comput. 2014 Feb 11;10(2):865-879 [PMID: 24803855]
  33. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  34. BMC Bioinformatics. 2007 Jan 05;8:4 [PMID: 17207271]
  35. Virol J. 2012 Jun 13;9:111 [PMID: 22695180]
  36. BMC Bioinformatics. 2007 Sep 26;8:361 [PMID: 17897458]
  37. PLoS Curr. 2014 Nov 03;6:null [PMID: 25642381]
  38. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  39. Sci Rep. 2015 Aug 04;5:12501 [PMID: 26238798]
  40. Am J Public Health. 2004 Jun;94(6):985-9 [PMID: 15249303]
  41. J Infect Dis. 2011 Nov;204 Suppl 3:S941-6 [PMID: 21987773]
  42. Microbes Infect. 2006 Mar;8(3):738-46 [PMID: 16476561]
  43. Protein Sci. 1993 Sep;2(9):1511-9 [PMID: 8401235]
  44. JAMA. 2016 Apr 19;315(15):1610-23 [PMID: 27092831]
  45. Methods Enzymol. 1997;277:396-404 [PMID: 9379925]
  46. J Comput Biol. 2003;10(6):857-68 [PMID: 14980014]
  47. Mol Immunol. 2008 Mar;45(5):1221-30 [PMID: 17980430]
  48. J Mol Biol. 2004 Apr 23;338(2):419-35 [PMID: 15066441]
  49. Scand J Immunol. 2015 Jul;82(1):25-34 [PMID: 25857850]
  50. Clin Vaccine Immunol. 2010 Jun;17(6):1027-33 [PMID: 20410327]
  51. Adv Protein Chem. 1985;37:1-109 [PMID: 2865874]
  52. Vaccine. 2006 May 15;24(20):4343-53 [PMID: 16581161]
  53. BMC Bioinformatics. 2007 Oct 31;8:424 [PMID: 17973982]
  54. MBio. 2014 Nov 04;5(6):e02011 [PMID: 25370495]
  55. PLoS One. 2009 Jun 10;4(6):e5861 [PMID: 19516900]
  56. J Comput Chem. 2015 May 15;36(13):996-1007 [PMID: 25824339]
  57. Future Virol. 2009;4(6):621-635 [PMID: 20198110]
  58. J Mol Graph Model. 2006 Dec;25(4):481-6 [PMID: 16644253]
  59. J Infect Dis. 1999 Feb;179 Suppl 1:S164-9 [PMID: 9988180]
  60. FEBS Lett. 1990 Dec 10;276(1-2):172-4 [PMID: 1702393]
  61. Turk J Med Sci. 2015;45(1):1-5 [PMID: 25790522]
  62. Tissue Antigens. 2007 Dec;70(6):511-4 [PMID: 17990990]
  63. J Comput Chem. 2010 Jan 30;31(2):455-61 [PMID: 19499576]
  64. Annu Rev Biochem. 1978;47:251-76 [PMID: 354496]
  65. Front Microbiol. 2015 Feb 19;6:135 [PMID: 25745423]
  66. Methods Mol Biol. 2012;819:405-21 [PMID: 22183550]
  67. MMWR Morb Mortal Wkly Rep. 2014 Jun 27;63(25):548-51 [PMID: 24964881]
  68. Cell Mol Life Sci. 2005 May;62(9):1025-37 [PMID: 15868101]
  69. Expert Opin Drug Discov. 2015 May;10(5):449-61 [PMID: 25835573]
  70. Science. 1991 Jul 12;253(5016):164-70 [PMID: 1853201]
  71. BMC Bioinformatics. 2014 May 29;15:161 [PMID: 24884408]
  72. J Biomol NMR. 1996 Dec;8(4):477-86 [PMID: 9008363]
  73. Tissue Antigens. 2003 Nov;62(5):378-84 [PMID: 14617044]
  74. Adv Biomed Res. 2015 Sep 28;4:201 [PMID: 26601089]
  75. Virology. 2007 Apr 10;360(2):257-63 [PMID: 17123567]
  76. J Immunol. 2003 Nov 15;171(10):5611-23 [PMID: 14607970]
  77. Bioinformatics. 2007 Nov 1;23(21):2947-8 [PMID: 17846036]
  78. Adv Bioinformatics. 2015;2015:278197 [PMID: 25709646]
  79. Immunome Res. 2006 Apr 24;2:2 [PMID: 16635264]
  80. J Mol Biol. 1996 Nov 22;264(1):121-36 [PMID: 8950272]
  81. Ther Adv Vaccines. 2015 Sep;3(5-6):125-38 [PMID: 26668751]
  82. Infect Genet Evol. 2015 Dec;36:369-75 [PMID: 26462623]
  83. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D115-9 [PMID: 14681372]

Word Cloud

Created with Highcharts 10.0.0EBOVvirusvaccineEbolamolecularpeptideproteinB-cellT-cellepitopeHKEGAFFLYepitopesdesignglycoproteinonelethalvirusescausing24epidemicoutbreaksdateDespiteavailableknowledgedefiniteremedialagentsdevelopedyetmanagementavoidanceinfectionshumansDisclosingpresentstudydescribedepitope-basedusingcombinationpredictionsfolloweddockingdynamicssimulationapproachsequencesglycoproteinscollectedexaminedviasilicomethodsdetermineimmunogenicidentifiedantigenicregionranging186220sequencepositions154-162consideredpotentialcorrespondinglyMoreoverinteractedHLA-A*32:15highestbindingenergystabilityalsogoodconservancy8385%maximumpopulationcoverageresultsimplydesignedmanifestvigorousenduringdefensiveimmunitysilico-based

Similar Articles

Cited By