Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?

Javier T Gonzalez, Cas J Fuchs, James A Betts, Luc J C van Loon
Author Information
  1. Javier T Gonzalez: Department for Health, University of Bath, Bath BA2 7AY, UK. J.T.Gonzalez@bath.ac.uk.
  2. Cas J Fuchs: Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD Maastricht, The Netherlands. cas.fuchs@maastrichtuniversity.nl.
  3. James A Betts: Department for Health, University of Bath, Bath BA2 7AY, UK. j.betts@bath.ac.uk.
  4. Luc J C van Loon: Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD Maastricht, The Netherlands. l.vanloon@maastrichtuniversity.nl.

Abstract

Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass·h can enhance glycogen repletion rates whilst also minimising gastrointestinal distress.

Keywords

References

  1. J Physiol. 2013 Sep 15;591(18):4405-13 [PMID: 23652590]
  2. Nutr Metab (Lond). 2013 Aug 13;10(1):54 [PMID: 23941499]
  3. Am J Physiol. 1993 Sep;265(3 Pt 1):E380-91 [PMID: 8214047]
  4. J Appl Physiol (1985). 2017 May 1;122(5):1055-1067 [PMID: 27789774]
  5. J Appl Physiol (1985). 2000 May;88(5):1529-36 [PMID: 10797108]
  6. Nutrients. 2017 Feb 20;9(2): [PMID: 28230742]
  7. J Int Soc Sports Nutr. 2014 Mar 04;11(1):8 [PMID: 24589205]
  8. J Appl Physiol (1985). 1990 Oct;69(4):1244-51 [PMID: 2262441]
  9. J Appl Physiol (1985). 1992 Feb;72(2):468-75 [PMID: 1559921]
  10. Am J Physiol Endocrinol Metab. 2009 May;296(5):E1140-7 [PMID: 19223653]
  11. J Appl Physiol (1985). 1986 Jul;61(1):165-72 [PMID: 3525502]
  12. Pflugers Arch. 2007 Jul;454(4):635-47 [PMID: 17333244]
  13. Med Sci Sports Exerc. 1997 Apr;29(4):482-8 [PMID: 9107630]
  14. Am J Physiol Endocrinol Metab. 2000 Jan;278(1):E65-75 [PMID: 10644538]
  15. Med Sci Sports Exerc. 1987 Oct;19(5):491-6 [PMID: 3316904]
  16. J Clin Endocrinol Metab. 2006 Jun;91(6):2062-7 [PMID: 16537685]
  17. Biochem Biophys Res Commun. 2003 Aug 29;308(3):422-6 [PMID: 12914765]
  18. FASEB J. 2015 Sep;29(9):4046-58 [PMID: 26071406]
  19. J Neurol Neurosurg Psychiatry. 2012 Mar;83(3):322-8 [PMID: 22250184]
  20. J Appl Physiol (1985). 2006 Apr;100(4):1134-41 [PMID: 16322366]
  21. Med Sci Sports Exerc. 2016 Jan;48(1):123-31 [PMID: 26197030]
  22. Br J Nutr. 2013 Aug;110(4):721-32 [PMID: 23340006]
  23. J Appl Physiol (1985). 2008 Jun;104(6):1709-19 [PMID: 18369092]
  24. Metabolism. 2002 Jul;51(7):827-32 [PMID: 12077725]
  25. Endocrinology. 2012 Sep;153(9):4181-91 [PMID: 22822162]
  26. Scand J Med Sci Sports. 2016 Sep;26(9):1100-8 [PMID: 26316418]
  27. Lab Invest. 1966 Jan;15(1 Pt 2):330-56 [PMID: 5931667]
  28. J Appl Physiol (1985). 2006 Mar;100(3):807-16 [PMID: 16282436]
  29. J Physiol. 2001 Oct 1;536(Pt 1):295-304 [PMID: 11579177]
  30. Sports Med. 2010 Nov 1;40(11):941-59 [PMID: 20942510]
  31. J Clin Invest. 1987 Jul;80(1):95-100 [PMID: 3110217]
  32. Acta Med Scand. 1967 Jul;182(1):93-107 [PMID: 6028956]
  33. Sports Med. 2015 Nov;45(11):1561-76 [PMID: 26373645]
  34. J Biol Chem. 1979 Jul 25;254(14):6548-53 [PMID: 447733]
  35. Metabolism. 2011 Feb;60(2):215-26 [PMID: 20153492]
  36. Med Sci Sports Exerc. 2013 Sep;45(9):1814-24 [PMID: 23949097]
  37. J Physiol. 2002 Jun 15;541(Pt 3):979-89 [PMID: 12068056]
  38. Int J Sports Med. 2005 Feb;26 Suppl 1:S28-37 [PMID: 15702454]
  39. Med Sci Sports Exerc. 2004 Sep;36(9):1551-8 [PMID: 15354037]
  40. Pflugers Arch. 1994 Mar;426(5):378-86 [PMID: 8015888]
  41. Sports Med. 2000 Jun;29(6):407-24 [PMID: 10870867]
  42. J Appl Physiol (1985). 1993 Aug;75(2):1019-23 [PMID: 8226443]
  43. Am J Physiol. 1992 Aug;263(2 Pt 1):E199-204 [PMID: 1514599]
  44. J Appl Physiol (1985). 2000 May;88(5):1631-6 [PMID: 10797123]
  45. J Appl Physiol (1985). 2004 Apr;96(4):1285-91 [PMID: 14657044]
  46. J Physiol. 1999 Sep 15;519 Pt 3:901-10 [PMID: 10457099]
  47. Physiol Rev. 2010 Jan;90(1):23-46 [PMID: 20086073]
  48. Sports Med. 2011 Sep 1;41(9):773-92 [PMID: 21846165]
  49. J Appl Physiol (1985). 2016 Jun 1;120(11):1328-34 [PMID: 27013608]
  50. Acta Physiol Scand. 1967 Oct-Nov;71(2):140-50 [PMID: 5584523]
  51. Nature. 1966 Apr 16;210(5033):309-10 [PMID: 5954569]
  52. J Physiol. 1992;451:205-27 [PMID: 1403811]
  53. Am J Physiol. 1996 Jan;270(1 Pt 1):E186-91 [PMID: 8772491]
  54. Scand J Clin Lab Invest. 1972 Sep;30(1):77-84 [PMID: 4627390]
  55. J Appl Physiol (1985). 1991 Nov;71(5):1801-6 [PMID: 1761477]
  56. Br J Nutr. 2009 Nov;102(10):1408-13 [PMID: 19671200]
  57. J Clin Invest. 1963 Apr;42:556-62 [PMID: 14024642]
  58. Am J Clin Nutr. 1988 Dec;48(6):1424-30 [PMID: 3202090]
  59. Am J Clin Nutr. 2016 Nov;104(5):1274-1284 [PMID: 27655440]
  60. Eur J Appl Physiol. 2003 Jan;88(4-5):459-65 [PMID: 12527978]
  61. Int J Sport Nutr Exerc Metab. 2015 Oct;25(5):427-38 [PMID: 25811946]
  62. Diabetes. 1998 Jul;47(7):1107-13 [PMID: 9648835]
  63. J Appl Physiol (1985). 1993 Dec;75(6):2774-80 [PMID: 8125902]
  64. Clin Sci (Lond). 2011 Jun;120(12):537-48 [PMID: 21231913]
  65. Nat Commun. 2013;4:2316 [PMID: 23939267]
  66. Eur J Appl Physiol Occup Physiol. 1992;64(4):328-34 [PMID: 1592058]
  67. Med Sci Sports Exerc. 2011 Oct;43(10):1964-71 [PMID: 21407126]
  68. J Appl Physiol (1985). 1999 Oct;87(4):1413-20 [PMID: 10517772]
  69. Eur J Clin Nutr. 1990 Sep;44(9):689-92 [PMID: 2261901]
  70. J Biol Chem. 1976 Dec 10;251(23):7322-8 [PMID: 12161]
  71. J Physiol. 1991 Mar;434:423-40 [PMID: 1902517]
  72. Diabetes. 2009 Apr;58(4):847-54 [PMID: 19188436]
  73. Am J Clin Nutr. 2017 Mar;105(3):609-617 [PMID: 28100512]
  74. Exp Physiol. 2015 Dec;100(12):1441-50 [PMID: 26140358]
  75. Med Sci Sports Exerc. 2008 Oct;40(10):1789-94 [PMID: 18799989]
  76. Med Sci Sports Exerc. 2016 May;48(5):907-12 [PMID: 26606271]
  77. J Reprod Fertil. 1966 Dec;12(3):437-44 [PMID: 5928265]
  78. Am J Clin Nutr. 2007 Jun;85(6):1511-20 [PMID: 17556686]
  79. J Appl Physiol. 1967 Sep;23(3):331-5 [PMID: 6047953]
  80. Am J Physiol Endocrinol Metab. 2016 Sep 1;311(3):E543-53 [PMID: 27436612]
  81. Am J Physiol. 1978 Sep;235(3):E255-60 [PMID: 696819]
  82. World J Gastroenterol. 2006 Mar 21;12(11):1657-70 [PMID: 16586532]
  83. Med Sci Sports Exerc. 2005 Mar;37(3):426-32 [PMID: 15741841]
  84. Am J Physiol Endocrinol Metab. 2015 Dec 15;309(12):E1032-9 [PMID: 26487008]
  85. Curr Opin Clin Nutr Metab Care. 2010 Jul;13(4):452-7 [PMID: 20574242]
  86. Br J Nutr. 2005 Apr;93(4):485-92 [PMID: 15946410]
  87. Food Chem Toxicol. 2002 Oct;40(10):1375-81 [PMID: 12387299]
  88. Am J Physiol Endocrinol Metab. 2000 Feb;278(2):E244-51 [PMID: 10662708]
  89. J Appl Physiol (1985). 2004 Apr;96(4):1277-84 [PMID: 14657042]
  90. Metabolism. 2005 May;54(5):610-8 [PMID: 15877291]
  91. J Appl Physiol (1985). 2008 Jul;105(1):7-13 [PMID: 18467543]
  92. J Clin Invest. 1966 Mar;45(3):388-98 [PMID: 5904556]
  93. Scand J Clin Lab Invest. 1973 Dec;32(4):325-30 [PMID: 4771102]
  94. Med Sci Sports Exerc. 2009 Feb;41(2):357-63 [PMID: 19127189]
  95. Am J Clin Nutr. 2010 Nov;92(5):1071-9 [PMID: 20826630]
  96. Neurochem Int. 2003 Sep-Oct;43(4-5):323-9 [PMID: 12742076]

MeSH Term

Athletic Performance
Blood Glucose
Dietary Carbohydrates
Exercise
Fructose
Glucose
Glycogen
Humans
Liver
Muscle, Skeletal
Sports Nutritional Physiological Phenomena

Chemicals

Blood Glucose
Dietary Carbohydrates
Fructose
Glycogen
Glucose

Word Cloud

Created with Highcharts 10.0.0glycogeningestionglucosefructosesucroseabsorptionratesmusclerepletionliverglucose-fructoseintestinalcarbohydratealonerate2mixturesCarbohydrateformperformanceprolongedexerciseendogenousstoresrecoveryco-ingestionGlucosetransportcapacityviacan≥1perbodyenhancegastrointestinaldistressavailabilityimportantdeterminantboutsmoderate-high-intensityThereforeeffectiveenduranceobjectivemultipleoccasionswithin24-hperiodrestorationprincipalfactordeterminingreviewconsidersrolefollowingprimarilyabsorbeddifferentproteinscombiningpathwaysutilisedincreasestotalMoreoveradditionfacilitatescurrentlyunidentifiedmechanismthereforeprovidesfastersumSimilarmetaboliceffectsachieveddisaccharideunlikelylimitedhydrolysisgkgmasshourappearsmaximisepost-exerciseProvidingcarbohydratespolymercontrastapproximatelydoubledisocaloricpolymersFurthermoreplusalleviatesapproachesexceeds~1g/minAccordinglyrapidpriorityingestingg·kgmass·hwhilstalsominimisingPlusFructoseIngestionPost-ExerciseRecovery-GreaterSumParts?carbohydratesmetabolismresynthesissportsnutrition

Similar Articles

Cited By