Infectious Disease Dynamics Inferred from Genetic Data via Sequential Monte Carlo.

R A Smith, E L Ionides, A A King
Author Information
  1. R A Smith: Department of Bioinformatics, University of Michigan, Ann Arbor, MI.
  2. E L Ionides: Department of Statistics, University of Michigan, Ann Arbor, MI.
  3. A A King: Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI.

Abstract

Genetic sequences from pathogens can provide information about infectious disease dynamics that may supplement or replace information from other epidemiological observations. Most currently available methods first estimate phylogenetic trees from sequence data, then estimate a transmission model conditional on these phylogenies. Outside limited classes of models, existing methods are unable to enforce logical consistency between the model of transmission and that underlying the phylogenetic reconstruction. Such conflicts in assumptions can lead to bias in the resulting inferences. Here, we develop a general, statistically efficient, plug-and-play method to jointly estimate both disease transmission and phylogeny using genetic data and, if desired, other epidemiological observations. This method explicitly connects the model of transmission and the model of phylogeny so as to avoid the aforementioned inconsistency. We demonstrate the feasibility of our approach through simulation and apply it to estimate stage-specific infectiousness in a subepidemic of human immunodeficiency virus in Detroit, Michigan. In a supplement, we prove that our approach is a valid sequential Monte Carlo algorithm. While we focus on how these methods may be applied to population-level models of infectious disease, their scope is more general. These methods may be applied in other biological systems where one seeks to infer population dynamics from genetic sequences, and they may also find application for evolutionary models with phenotypic rather than genotypic data.

Keywords

References

  1. J R Soc Interface. 2017 Jul;14(132): [PMID: 28679663]
  2. Mol Biol Evol. 2007 Dec;24(12):2669-80 [PMID: 17890241]
  3. PLoS Med. 2013 Dec;10(12):e1001568; discussion e1001568 [PMID: 24339751]
  4. Mol Ecol Resour. 2017 Jan;17(1):96-100 [PMID: 27801980]
  5. PLoS Comput Biol. 2015 Nov 23;11(11):e1004633 [PMID: 26599399]
  6. Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):719-24 [PMID: 25568084]
  7. Science. 2004 Jan 16;303(5656):327-32 [PMID: 14726583]
  8. PLoS Comput Biol. 2014 Apr 10;10(4):e1003537 [PMID: 24722319]
  9. Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):228-33 [PMID: 23248286]
  10. Mol Biol Evol. 1993 May;10(3):512-26 [PMID: 8336541]
  11. Bioinformatics. 2005 Mar 1;21(5):676-9 [PMID: 15509596]
  12. Bioinformatics. 2014 Aug 15;30(16):2272-9 [PMID: 24753484]
  13. PLoS Comput Biol. 2013;9(3):e1002947 [PMID: 23555203]
  14. Proc Biol Sci. 2012 Aug 22;279(1741):3367-75 [PMID: 22593106]
  15. Trends Ecol Evol. 2015 Jun;30(6):306-13 [PMID: 25887947]
  16. Mol Ecol. 2014 Dec;23(24):5947-65 [PMID: 25290107]
  17. J Mol Evol. 1981;17(6):368-76 [PMID: 7288891]
  18. Mol Biol Evol. 2014 Sep;31(9):2472-82 [PMID: 24874208]
  19. AIDS Behav. 2014 Jan;18(1):10-25 [PMID: 23620241]
  20. PLoS Comput Biol. 2016 Apr 12;12(4):e1004869 [PMID: 27070316]
  21. PLoS Biol. 2006 May;4(5):e88 [PMID: 16683862]
  22. PLoS Comput Biol. 2011 Aug;7(8):e1002136 [PMID: 21901082]
  23. PLoS One. 2009;4(3):e4724 [PMID: 19266092]
  24. Mol Biol Evol. 2015 Sep;32(9):2483-95 [PMID: 26006189]
  25. J R Soc Interface. 2010 Feb 6;7(43):271-83 [PMID: 19535416]
  26. Epidemics. 2015 Mar;10:88-92 [PMID: 25843391]
  27. Mol Biol Evol. 2001 Jun;18(6):897-906 [PMID: 11371577]
  28. Syst Biol. 2012 Jul;61(4):579-93 [PMID: 22223445]

Grants

  1. R01 AI101155/NIAID NIH HHS
  2. U54 GM111274/NIGMS NIH HHS

MeSH Term

Algorithms
Biological Evolution
Disease Transmission, Infectious
Evolution, Molecular
Humans
Monte Carlo Method
Phylogeny
Sequence Analysis, DNA

Word Cloud

Created with Highcharts 10.0.0maymethodsestimatetransmissionmodeldiseasedatamodelsvirusMonteCarloGeneticsequencescaninformationinfectiousdynamicssupplementepidemiologicalobservationsphylogeneticgeneralmethodphylogenygeneticapproachhumanimmunodeficiencysequentialappliedpathogensprovidereplacecurrentlyavailablefirsttreessequenceconditionalphylogeniesOutsidelimitedclassesexistingunableenforcelogicalconsistencyunderlyingreconstructionconflictsassumptionsleadbiasresultinginferencesdevelopstatisticallyefficientplug-and-playjointlyusingdesiredexplicitlyconnectsavoidaforementionedinconsistencydemonstratefeasibilitysimulationapplystage-specificinfectiousnesssubepidemicDetroitMichiganprovevalidalgorithmfocuspopulation-levelscopebiologicalsystemsoneseeksinferpopulationalsofindapplicationevolutionaryphenotypicrathergenotypicInfectiousDiseaseDynamicsInferredDataviaSequentialiteratedfilteringmaximumlikelihoodphylodynamicsevolution

Similar Articles

Cited By