Bayesian data analysis for newcomers.

John K Kruschke, Torrin M Liddell
Author Information
  1. John K Kruschke: Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN, 47405, USA. johnkruschke@gmail.com.
  2. Torrin M Liddell: Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN, 47405, USA.

Abstract

This article explains the foundational concepts of Bayesian data analysis using virtually no mathematical notation. Bayesian ideas already match your intuitions from everyday reasoning and from traditional data analysis. Simple examples of Bayesian data analysis are presented that illustrate how the information delivered by a Bayesian analysis can be directly interpreted. Bayesian approaches to null-value assessment are discussed. The article clarifies misconceptions about Bayesian methods that newcomers might have acquired elsewhere. We discuss prior distributions and explain how they are not a liability but an important asset. We discuss the relation of Bayesian data analysis to Bayesian models of mind, and we briefly discuss what methodological problems Bayesian data analysis is not meant to solve. After you have read this article, you should have a clear sense of how Bayesian data analysis works and the sort of information it delivers, and why that information is so intuitive and useful for drawing conclusions from data.

Keywords

References

  1. Br J Math Stat Psychol. 2001 Nov;54(Pt 2):237-63 [PMID: 11817092]
  2. Front Psychol. 2013 Nov 26;4:863 [PMID: 24324449]
  3. Perspect Psychol Sci. 2012 Nov;7(6):528-30 [PMID: 26168108]
  4. Psychol Methods. 2017 Jun;22(2):322-339 [PMID: 26651986]
  5. Biometrics. 1976 Dec;32(4):741-4 [PMID: 1009222]
  6. Wiley Interdiscip Rev Cogn Sci. 2011 Jan;2(1):8-21 [PMID: 26301909]
  7. Psychon Bull Rev. 2014 Apr;21(2):268-82 [PMID: 24002963]
  8. Psychon Bull Rev. 2007 Oct;14(5):779-804 [PMID: 18087943]
  9. Psychol Sci. 2014 Jan;25(1):7-29 [PMID: 24220629]
  10. J Exp Psychol Gen. 2012 Feb;141(1):2-18 [PMID: 21823805]
  11. Perspect Psychol Sci. 2011 May;6(3):299-312 [PMID: 26168520]
  12. Cogn Sci. 2008 Dec;32(8):1248-84 [PMID: 21585453]
  13. Soc Psychol Personal Sci. 2017 May;8(4):355-362 [PMID: 28736600]
  14. Psychon Bull Rev. 2005 Aug;12(4):573-604 [PMID: 16447374]
  15. J Exp Psychol Gen. 2013 May;142(2):573-603 [PMID: 22774788]
  16. Cognition. 2011 Sep;120(3):302-21 [PMID: 21269608]
  17. Psychon Bull Rev. 2014 Apr;21(2):283-300 [PMID: 24101570]
  18. PLoS One. 2011;6(6):e20387 [PMID: 21674043]
  19. Psychol Sci. 2011 Nov;22(11):1359-66 [PMID: 22006061]
  20. Front Psychol. 2014 Jul 29;5:781 [PMID: 25120503]
  21. Psychon Bull Rev. 2016 Feb;23(1):74-86 [PMID: 26126776]
  22. Psychon Bull Rev. 2016 Feb;23(1):131-40 [PMID: 26620955]
  23. Psychon Bull Rev. 2009 Apr;16(2):225-37 [PMID: 19293088]
  24. Annu Rev Psychol. 2008;59:537-63 [PMID: 17937603]
  25. J Exp Psychol Gen. 2014 Aug;143(4):1457-75 [PMID: 24867486]
  26. J Exp Psychol Gen. 1986 Mar;115(1):39-61 [PMID: 2937873]
  27. Psychol Sci. 2012 May 1;23(5):524-32 [PMID: 22508865]
  28. Behav Res Methods. 2009 Nov;41(4):1111-20 [PMID: 19897818]
  29. Bull NYU Hosp Jt Dis. 2008;66(2):150-4 [PMID: 18537788]
  30. Trends Cogn Sci. 2010 Jul;14(7):293-300 [PMID: 20542462]
  31. Psychon Bull Rev. 2018 Feb;25(1):178-206 [PMID: 28176294]
  32. Trends Cogn Sci. 2006 Jul;10(7):287-91 [PMID: 16807064]
  33. Perspect Psychol Sci. 2014 May;9(3):293-304 [PMID: 26173265]
  34. Psychon Bull Rev. 2012 Dec;19(6):1047-56 [PMID: 22869335]
  35. J Comput Graph Stat. 2009 Jun 1;18(2):306-320 [PMID: 23997568]
  36. Perspect Psychol Sci. 2011 May;6(3):291-8 [PMID: 26168519]
  37. Behav Res Methods. 2011 Sep;43(3):679-90 [PMID: 21302025]
  38. Perspect Psychol Sci. 2014 May;9(3):275-7 [PMID: 26173263]
  39. Multivariate Behav Res. 2012 Nov;47(6):877-903 [PMID: 26735007]
  40. Perspect Psychol Sci. 2011 May;6(3):274-90 [PMID: 26168518]
  41. Psychol Bull. 1993 May;113(3):553-65 [PMID: 8316613]
  42. Learn Behav. 2008 Aug;36(3):210-26 [PMID: 18683466]
  43. Behav Ther. 2015 Nov;46(6):809-23 [PMID: 26520223]
  44. Psychon Bull Rev. 2014 Apr;21(2):301-8 [PMID: 24659049]
  45. Psychol Rev. 2009 Apr;116(2):439-53 [PMID: 19348549]
  46. Curr Opin Neurobiol. 2014 Apr;25:130-3 [PMID: 24463330]
  47. Perspect Psychol Sci. 2011 May;6(3):313 [PMID: 26168521]
  48. Psychol Methods. 2011 Dec;16(4):406-19 [PMID: 21787084]
  49. Control Clin Trials. 2002 Feb;23(1):2-14 [PMID: 11852160]

MeSH Term

Bayes Theorem
Data Analysis
Humans

Word Cloud

Created with Highcharts 10.0.0BayesiananalysisdataarticleinformationdiscussnewcomersintervalexplainsfoundationalconceptsusingvirtuallymathematicalnotationideasalreadymatchintuitionseverydayreasoningtraditionalSimpleexamplespresentedillustratedeliveredcandirectlyinterpretedapproachesnull-valueassessmentdiscussedclarifiesmisconceptionsmethodsmightacquiredelsewherepriordistributionsexplainliabilityimportantassetrelationmodelsmindbrieflymethodologicalproblemsmeantsolvereadclearsenseworkssortdeliversintuitiveusefuldrawingconclusionsBayesfactormodelConfidenceHighestdensityNullhypothesissignificancetestRegionpracticalequivalenceReplicationcrisispvalue

Similar Articles

Cited By