The brain anatomy of attention-deficit/hyperactivity disorder in young adults - a magnetic resonance imaging study.

Jean-G Gehricke, Frithjof Kruggel, Tanyaporn Thampipop, Sharina Dyan Alejo, Erik Tatos, James Fallon, L Tugan Muftuler
Author Information
  1. Jean-G Gehricke: Department of Pediatrics, University of California, Irvine, Irvine, California, United States of America. ORCID
  2. Frithjof Kruggel: Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America.
  3. Tanyaporn Thampipop: Department of Pediatrics, University of California, Irvine, Irvine, California, United States of America.
  4. Sharina Dyan Alejo: Department of Pediatrics, University of California, Irvine, Irvine, California, United States of America.
  5. Erik Tatos: Department of Pediatrics, University of California, Irvine, Irvine, California, United States of America.
  6. James Fallon: Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, California, United States of America.
  7. L Tugan Muftuler: Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America.

Abstract

BACKGROUND: This is one of the first studies to examine the structural brain anatomy and connectivity associated with an ADHD diagnosis and child as well as adult ADHD symptoms in young adults. It was hypothesized that an adult ADHD diagnosis and in particular childhood symptoms, are associated with widespread changes in the brain macro- and microstructure, which can be used to develop a morphometric biomarker for ADHD.
METHODS: Voxel-wise linear regression models were used to examine structural and diffusion-weighted MRI data in 72 participants (31 young adults with ADHD and 41 controls without ADHD) in relation to diagnosis and the number of self-reported child and adult symptoms.
RESULTS: Findings revealed significant associations between ADHD diagnosis and widespread changes to the maturation of white matter fiber bundles and gray matter density in the brain, such as structural shape changes (incomplete maturation) of the middle and superior temporal gyrus, and fronto-basal portions of both frontal lobes. ADHD symptoms in childhood showed the strongest association with brain macro- and microstructural abnormalities. At the brain circuitry level, the superior longitudinal fasciculus (SLF) and cortico-limbic areas are dysfunctional in individuals with ADHD. The morphometric findings predicted an ADHD diagnosis correctly up to 83% of all cases.
CONCLUSION: An adult ADHD diagnosis and in particular childhood symptoms are associated with widespread micro- and macrostructural changes. The SLF and cortico-limbic findings suggest complex audio-visual, motivational, and emotional dysfunctions associated with ADHD in young adults. The sensitivity of the morphometric findings in predicting an ADHD diagnosis was sufficient, which indicates that MRI-based assessments are a promising strategy for the development of a biomarker.

References

  1. Neuroimage. 2009 Mar;45(1 Suppl):S61-72 [PMID: 19041946]
  2. Pharmacol Biochem Behav. 2013 Nov;112:78-81 [PMID: 24125785]
  3. Front Hum Neurosci. 2013 May 15;7:192 [PMID: 23720619]
  4. Behav Brain Funct. 2011 Aug 25;7:38 [PMID: 21867487]
  5. Psychiatr Prax. 2004 Nov;31 Suppl 2:S210-4 [PMID: 15586312]
  6. Biol Psychiatry. 2007 Jun 15;61(12):1361-9 [PMID: 16950217]
  7. Hum Brain Mapp. 2016 Sep;37(9):3323-36 [PMID: 27159198]
  8. Psychol Med. 2013 May;43(5):1093-107 [PMID: 22894768]
  9. Am J Psychiatry. 2011 Nov;168(11):1154-63 [PMID: 21865529]
  10. Neuroimage. 2007 Feb 1;34(3):1182-90 [PMID: 17126039]
  11. Pharmacol Biochem Behav. 2011 May;98(3):485-91 [PMID: 21356232]
  12. Vision Res. 2014 Aug;101:62-72 [PMID: 24863585]
  13. J Neurosci. 2012 Jan 18;32(3):841-9 [PMID: 22262882]
  14. Science. 2003 Jan 3;299(5603):81-6 [PMID: 12511644]
  15. Psychiatry Res. 2010 Mar 30;181(3):193-8 [PMID: 20153608]
  16. Brain Topogr. 2011 Oct;24(3-4):243-52 [PMID: 21191807]
  17. Neuropsychopharmacology. 2015 Feb;40(3):746-54 [PMID: 25241803]
  18. Neuroimage. 2011 Jan 1;54(1):313-27 [PMID: 20656036]
  19. BMC Psychiatry. 2008 Jun 30;8:51 [PMID: 18590567]
  20. Med Image Anal. 1999 Jun;3(2):175-85 [PMID: 10711997]
  21. Brain Res. 2010 Jan 15;1310:172-80 [PMID: 19852946]
  22. JAMA. 2009 Sep 9;302(10 ):1084-91 [PMID: 19738093]
  23. Hum Brain Mapp. 2009 Sep;30(9):2757-65 [PMID: 19107752]
  24. J Neurophysiol. 1975 Jul;38(4):871-908 [PMID: 808592]
  25. AJNR Am J Neuroradiol. 1999 Sep;20(8):1491-9 [PMID: 10512236]
  26. Prog Neuropsychopharmacol Biol Psychiatry. 2015 Dec 3;63:14-22 [PMID: 25956761]
  27. Neuroimage. 2007 Apr 1;35(2):738-47 [PMID: 17289404]
  28. Psychol Med. 2006 Feb;36(2):159-65 [PMID: 16420712]
  29. Eur Arch Psychiatry Clin Neurosci. 2012 Jun;262(4):351-60 [PMID: 21879383]
  30. J Child Neurol. 2011 Oct;26(10):1296-302 [PMID: 21628699]
  31. Acta Psychiatr Scand. 2012 Feb;125(2):114-26 [PMID: 22118249]
  32. Psychiatry Res. 2011 Jan 30;191(1):31-5 [PMID: 21129938]
  33. J Am Acad Child Adolesc Psychiatry. 2013 Apr;52(4):431-440.e4 [PMID: 23582873]
  34. J Am Acad Child Adolesc Psychiatry. 2001 Feb;40(2):147-58 [PMID: 11211363]
  35. JAMA. 2002 Oct 9;288(14):1740-8 [PMID: 12365958]
  36. Biol Psychiatry. 2014 Oct 15;76(8):656-63 [PMID: 24503470]
  37. Psychiatry Res. 2013 Dec 30;210(3):1310-2 [PMID: 23993465]
  38. J Magn Reson Imaging. 2013 Feb;37(2):372-81 [PMID: 23034880]
  39. J Clin Psychiatry. 2006;67 Suppl 8:7-12 [PMID: 16961424]
  40. J Psychiatry Neurosci. 2013 Sep;38(5):333-40 [PMID: 23611175]
  41. Arch Gen Psychiatry. 2011 Feb;68(2):181-9 [PMID: 21300945]
  42. Biol Psychiatry. 2012 Mar 1;71(5):443-50 [PMID: 22153589]
  43. Hum Brain Mapp. 2007 Nov;28(11):1194-205 [PMID: 17266101]
  44. Neurosci Biobehav Rev. 2012 Apr;36(4):1093-106 [PMID: 22305957]
  45. Brain Res. 1982 May 27;240(2):368-72 [PMID: 7104700]
  46. Hum Brain Mapp. 1994;1(3):210-20 [PMID: 24578041]
  47. Psychopharmacology (Berl). 2003 Jan;165(2):118-27 [PMID: 12417963]
  48. PLoS One. 2015 May 27;10(5):e0125573 [PMID: 26018057]
  49. Ann Neurol. 1981 Oct;10(4):309-25 [PMID: 7032417]
  50. Eur J Neurosci. 2010 Mar;31(5):912-9 [PMID: 20374289]
  51. J Am Acad Child Adolesc Psychiatry. 2011 Mar;50(3):283-92 [PMID: 21334568]
  52. Biol Psychiatry. 2011 Jun 15;69(12):1168-77 [PMID: 21546000]
  53. Biol Psychiatry. 2005 Jun 1;57(11):1273-84 [PMID: 15949999]
  54. J Am Acad Child Adolesc Psychiatry. 2008 Apr;47(4):426-34 [PMID: 18388760]
  55. Psychol Med. 2012 Oct;42(10):2225-34 [PMID: 22369977]
  56. Neurotherapeutics. 2007 Jul;4(3):316-29 [PMID: 17599699]
  57. Biol Psychiatry. 2005 Mar 1;57(5):448-55 [PMID: 15737658]
  58. J Neurosci. 2007 Aug 1;27(31):8161-5 [PMID: 17670959]
  59. Cereb Cortex. 1995 Sep-Oct;5(5):391-409 [PMID: 8547787]
  60. IEEE Trans Med Imaging. 2007 Nov;26(11):1472-82 [PMID: 18041263]
  61. J Neurosci. 1984 Jul;4(7):1863-74 [PMID: 6737043]
  62. J Atten Disord. 2002 Mar;5(4):223-31 [PMID: 11967478]
  63. Eur J Neurosci. 2002 Jul;16(2):291-310 [PMID: 12169111]
  64. Annu Rev Neurosci. 1986;9:357-81 [PMID: 3085570]
  65. Psychiatry Res. 2012 Feb 28;201(2):168-73 [PMID: 22386969]
  66. Mol Psychiatry. 2011 Nov;16(11):1147-54 [PMID: 20856250]
  67. Neuroimage. 2005 May 15;26(1):132-40 [PMID: 15862213]
  68. Neuroimage. 2002 Nov;17(3):1429-36 [PMID: 12414282]
  69. Neurosci Lett. 2005 Dec 2;389(2):88-93 [PMID: 16129560]
  70. Cereb Cortex. 2008 May;18(5):1210-20 [PMID: 17906338]
  71. J Optom. 2014 Jan-Mar;7(1):22-36 [PMID: 24646898]
  72. Psychol Addict Behav. 2009 Dec;23(4):644-55 [PMID: 20025370]

Grants

  1. UL1 TR001414/NCATS NIH HHS

MeSH Term

Adult
Attention Deficit Disorder with Hyperactivity
Diffusion Magnetic Resonance Imaging
Female
Frontal Lobe
Gray Matter
Humans
Male
Young Adult

Word Cloud

Created with Highcharts 10.0.0ADHDdiagnosisbrainsymptomsassociatedadultyoungadultschangesstructuralchildhoodwidespreadmorphometricfindingsexamineanatomychildparticularmacro-usedbiomarkermaturationmattersuperiorSLFcortico-limbicBACKGROUND:onefirststudiesconnectivitywellhypothesizedmicrostructurecandevelopMETHODS:Voxel-wiselinearregressionmodelsdiffusion-weightedMRIdata72participants3141controlswithoutrelationnumberself-reportedRESULTS:Findingsrevealedsignificantassociationswhitefiberbundlesgraydensityshapeincompletemiddletemporalgyrusfronto-basalportionsfrontallobesshowedstrongestassociationmicrostructuralabnormalitiescircuitrylevellongitudinalfasciculusareasdysfunctionalindividualspredictedcorrectly83%casesCONCLUSION:micro-macrostructuralsuggestcomplexaudio-visualmotivationalemotionaldysfunctionssensitivitypredictingsufficientindicatesMRI-basedassessmentspromisingstrategydevelopmentattention-deficit/hyperactivitydisorder-magneticresonanceimagingstudy

Similar Articles

Cited By